
Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Chapter Three

Programming the 8086 Microprocessor

3.1 Assembly Language

Assembly language is the programming language of the microprocessor that uses the of

abbreviation of the names of the operations that deals different types of data and understood by

the human. Each type of CPU has its own assembly language, so this assembly language

program was written for one type of CPU and won't run on another.

In assembly language, a unique letters combination is assigned for each operation. These letters

combination is referred to as mnemonic such as:

MOV refers to Move operation.

ADD refers to Addition operation.

MUL refers to Multiplication operation.

Assembly language programs are translated into machine language by a program called an

assembler.

3.2 Instruction Set

There are a total of 117 basic instructions for the 8086. The wide range of operands and

addressing modes permitted for use with these instructions further expands the instruction set

into many more executable instruction. For e.g., the basic MOV instruction expands into 28

different machine level instructions.

The instruction set will be divided into a number of groups of functionally related instruction,

these are:

• Data transfer instructions.

• Arithmetic instructions.

• Logical instructions.

• Shifting and Rotating instructions.

23

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

• Flag control instructions.

• Program flow control instructions.

• String instructions.

• Miscellaneous instructions.

3.2.1 Data transfer instructions

The 8086 MP has a group of data transfer instructions that are provided to move data either

between its internal registers or between an internal register with a storage memory location. In

this section we will introduce some of the instructions used in data transfer. These are (MOV,

XCHG, LEA, LDS, LES). The other instructions will be studied in the future.

i. MOV instruction

The MOV instruction is used to transfer 8 and 16-bit data to and from registers. Either the source

or destination has to be a register. The other operand can come from another register, from

memory, from immediate data (a value included in the instruction).

Mnemonics Meaning Format Operation Flags affected

MOV Move MOV Dest.,Source (Source) (Dest.) None

The large choice of source and destination results in many different move instructions. Table

(3.1) shows the valid source and destination variations.

Destination Source

Mem.

Accumulator

Reg.

Reg.

Mem.

Reg.

Mem.

Seg. – Reg.

Seg. – Reg.

Reg. – 16

Mem.

Accumulator

Mem.

Reg.

Mem.

Reg.

Immediate

Immediate

Reg. – 16

Mem. – 16

Seg. – Reg.

Seg. – Reg.

Table (3.1) Valid Source and Destination Variations used in MOV Instruction

24

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Examples:

MOV AL, 7Eh ; immediate mode.

MOV CX,DX ; Register mode.

MOV [1000h], CX ; Direct mode.

MOV [SI],AX ; Register Indirect mode.

MOV DI, [BP+SI+2F3Eh] ; Base Relative Plus Index.

ii. XCHG instruction

The 8086 XCHG instruction swaps the content of the source with content of the destination. The

data can be swapped either between 2 general purpose registers or between a general purpose

registers and a storage memory location.

Mnemonics Meaning Format Operation Flags affected

XCHG Exchange XCHG Dest.,Source (Source) (Dest.) None

Table (3.2) shows the types of operands that can be used with XCHG instruction.

Destination Source

Mem.

Accumulator

Reg.

Reg.

Mem.

Accumulator

Mem.

Reg.

Mem.

Reg.

Table (3.2) Valid Source and Destination Variations used in XCHG Instruction

Example:

XCHG CX,DX ; Register mode.

XCHG [1000h], CX ; Direct mode.

XCHG [SI],AX ; Register Indirect mode.

25

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

XCHG DI, [BP+SI+2F3Eh] ; Base Relative Plus Index.

Important note: immediate addressing mode is not allowed in XCHG instruction.

iii. LEA instruction

The LEA instruction is used to load a 16-bit Reg. with a 16-bit offset of a memory location.

Mnemonics Meaning Format Operation Flags affected

LEA
Load Effective

Addres
LEA Reg 16, [offset] offset Reg 16 None

The destination operand can be one of the 16-bit general purpose registers while the source

operand is an offset address that can be used by any addressing mode.

Examples:

LEA DI, [2F3Eh] ; Direct.

LEA CX, [BP+SI+2F3Eh] ; Base Relative Plus Index.

LEA SP, [BX] ; Register indirect.

LEA DX, [BX+2000h] ; Register Relative.

Important note: immediate addressing mode is not allowed in LEA instruction.

iv. LDS and LES instructions

The LDS instruction loads any 16-bit register with an offset address and the DS register with

segment address. For example:

LDS CX, [DI]

this instruction transfers the 32-bit addressed by DI in the data segment into the CX and DS

registers respectively.

The LES instruction is similar to the LDS instruction except it loads the Extra segment register

ES instead of DS.

26

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Example 1: assume DS=2700h, DI=5000h, and SI=C500h, what are the new values of DS and

SI after executing the following instruction

LDS SI, [DI+02h]

Assume the content of memory locations are specified as shown below:

The PA of the memory location specified by the instruction is:

PA=DS*10h+(DI+02h)

 = 27000+5000+02

 =2C002h

So the registers content after the execution of the instruction will be as follows:

SI= BE3Ch

DS= 5020h

3.2.2 Arithmetic Instructions

The 8086 MP has a group of arithmetic instructions that perform different types of arithmetic

operations. The arithmetic operations such as Addition (ADD, ADC, and INC) instructions,

Subtraction (SUB, SBB, DEC, and NEG) instructions, Multiplication (MUL and IMUL)

instructions, and Division (DIV and IDIV) instructions. The status flags (CF, AC, SF, PF, ZF,

OF) are affected by the arithmetic operations and changed depending on the results of the

operations.

[2C002] 3C

[2C003] BE

[2C004] 20

[2C005] 50

27

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

3.2.2.1 Addition instructions
i. ADD, ADC instructions

The ADD instruction is used to perform the addition between two operands (i.e. between the

Destination and Source) operands. It simply adds the content of the source to the content of the

destination and stores the result into the destination operand. The status flags that will be

affected by the ADD instruction are CF, AC, SF, PF, ZF, OF.

Examples:

ADD AL, BL ; ALnew=ALold+BL.

ADD SI, [3000h] ; SInew=SIold+the content of the M.L. with offset of 3000h.

ADD CX, 5000h ; CXnew=CXold+5000h

ADD BYTEPTR[BP+5020h], 3Eh ; the content (8-bit) of M.L. with offset of (BP+5020h)+3Eh.

The ADC (ADD with carry) instruction has the same operation of the ADD instruction but will

add the content of the old CF to the result. The status flags that will be affected by the ADD

instruction are CF, AC, SF, PF, ZF, OF.

Examples:

ADC SI, DI ; SInew=SIold+DI+old CF

ADC DX, [BX] ; DXnew=DXold+ the content of the M.L. with offset of BX+old CF

ADC WORDPTR[2000h], 6600h ; the content of M.L. (16-bit) with offset of (2000h)+6600h+

old CF.

Important note: in case of addition with immediate addressing mode, it is acceptable to add the

(8-bit) number to the (16-bit) contents

Example:

ADD CX, 50h

ADC SI, FFh

ii. INC (increment) instruction is considered as one of the addition arithmetic instructions. It

simply adds one to the content of the register or the content of the memory locations. It

takes One operand only that represents the Source and Destination in the same time. It

also affects the status flags AC, SF, PF, ZF, OF except the CF.

Examples:

INC BYTEPTR[BX+SI+5000h] ; the content of the M.L. (8-bit) with offset of

(BX+SI+5000h)+1

INC CX ; CXnew=CXold+1

28

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Important note: the INC instruction does not take the immediate addressing mode.

Table below shows the operations of the addition instructions.

Mnemonics Meaning Format Operation Flags affected

ADD Addition ADD D,S D+S D
CF, AC, SF, PF,

ZF, OF

ADC ADD with Carry ADC D,S D+S+old CF D
CF, AC, SF, PF,

ZF, OF

INC
ADD 1 to the

content
INC D D+1 D

AC, SF, PF, ZF,

OF

Note: in the above table D means Destination and S means Source.

Example 2: Write an Assembly Language Program (A.L.P.) to add with carry two consecutive

bytes (8-bit) of data stored in data segment of start address of 7000h and an offset specified by

[BX+SI]. Store the result in register BL.

Solution:

MOV AX, 7000h

MOV DS, AX

MOV BL, 00h

ADC BL, [BX+SI]

ADC BL, [BX+SI+01h]

HLT

H.W. 1: Write an Assembly Language Program (A.L.P.) to add two consecutive words (16-

bit) of data stored in data segment of start address of 2000h and an offset specified by the

PA [27000h]. Store the result in the next 2 M.L.s followed the 2 consecutive words.

3.2.2.2 Subtraction instructions
i. SUB, SBB instructions

The SUB instruction is used to perform the subtraction between two operands (i.e. between the

Destination and Source) operands. It simply subtracts the content of the source from the content

of the destination and stores the result into the destination operand. The status flags that will be

affected by the SUB instruction are CF, AC, SF, PF, ZF, OF.

29

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Examples:

SUB AL, BL ; ALnew=ALold – BL (ALnew=ALold + 2's comp. of BL)

SUB SI, [3000h] ; SInew=SIold – the content of the M.L. with offset of 3000h (SIold

+2's comp. of the content of the M.L. with offset of 3000h)

SUB CX, 5000h ; CXnew=CXold – 5000h (CXold + the 2's comp. of the number

5000h).

SUB BYTEPTR[BP+5020h], 3Eh ; the content (8-bit) of M.L. with offset of (BP+5020h) –

3Eh(the content (8-bit) of M.L. with offset of (BP+5020h) +

2's comp. of the number 3Eh)

The SBB (SUB with Borrow) instruction has the same operation of the SUB instruction but will

subtract the content of the old CF(borrow) from the result. The status flags that will be affected

by the SBB instruction are CF, AC, SF, PF, ZF, OF.

Examples:

SBB SI, DI ; SInew=SIold–DI– old CF (SIold + 2's comp. of (DI+old CF))

SBB DX, [BX] ; DXnew=DXold – the content of the M.L. with offset of BX– old

CF (DXold + the 2's comp. of (the content of the M.L. with offset

of BX+ old CF))

SBB WORDPTR[2000h], 6600h ; the content of M.L. (16-bit) with offset of (2000h) – 6600h+

old CF(the content of M.L. (16-bit) with offset of (2000h) +

the 2's comp. of (6600h+ old CF))

Important note: in case of subtraction with immediate addressing mode, it is acceptable to

subtract the (8-bit) number to the (16-bit) contents

Examples:

SUB CX, 50h

SBB SI, FFh

ii. DEC (decrement) instruction is considered as one of the subtraction arithmetic instructions.

It simply subtracts one from the content of the register or the content of the memory

locations. It takes One operand only that represents the Source and Destination in the

same time. It also affects the status flags AC, SF, PF, ZF, OF except the CF.

Examples:

DEC BYTEPTR[BX+SI+5000h] ; the content of the M.L. (8-bit) with offset of (BX+SI+5000h)

– 1

DEC CX ; CXnew=CXold – 1

30

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Important note: the DEC instruction does not take the immediate addressing mode.

iii. NEG (negate or negative) instruction inverts the sign of the content of either the M.L. or of

a register. It actually takes the 2's complement of the content.

Examples:

NEG AX ; AXnew= – AXold (2's comp. of AX).

NEG WORDPTR[BP+DI] ; – the content (16-bit) of the M.L. with offset of (BP+DI) (2's

comp. of the content (16-bit) of the M.L. with offset of

(BP+DI)).

Important note: the NEG instruction does not take the immediate addressing mode.

Table below shows the operations of the subtraction instructions.

Mnemonics Meaning Format Operation Flags affected

SUB Subtraction SUB D,S D – S D
CF, AC, SF, PF,

ZF, OF

SBB SUB with Carry SBB D,S D – S – old CF D
CF, AC, SF, PF,

ZF, OF

DEC
SUB 1 from the

content
DEC D D – 1 D

AC, SF, PF, ZF,

OF

NEG Negate NEG D 2's comp. (D)
CF, AC, SF, PF,

ZF, OF

Example 3: Trace the following program step by step showing the values of the (CF, ACF, PF,

ZF, SF) assuming all initial values of the flags are ZEROS:

MOV AX, 1623h

MOV BX, F014h

MOV CX, 2002h

ADD AX, BX

DEC BX

SBB BX,CX

NEG CX

HLT

31

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Solution:

STEP AX BX CX CF ACF PF SF ZF

1 1623 0000 0000 0 0 0 0 0

2 1623 F014 0000 0 0 0 0 0

3 1623 F014 2002 0 0 0 0 0

4 0637 F014 2002

5 0637 F013 2002

6 0637 D010 2002

7 0637 D010 DFFE

H.W. 2: Trace the following program step by step showing the values of the (CF, ACF, PF,

ZF, SF) assuming all initial values of the flags are ZEROS:

MOV BX, 1234h

MOV DX, 2500h

INC CX

NEG CX

ADC DX, CX

ADD CX,32h

HLT

H.W. 3: Write an A.L.P to perform the following operations:

M1= M2+5

M2=M1–12

M3=M2+25

M4= –M3

Where M1, M2, M3, and M4 are memory locations that have an offsets of 0300h, 0400h,

0500h, and 0600h respectively.

3.2.2.3 Multiplication instructions: MUL and IMUL
The MUL (for unsigned numbers) and IMUL (for signed numbers) instructions are used to

perform the multiplication operation between two operands: the source is external and

the destination is internal. The source may be either register or memory with data either 8-bit or

32

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

16-bit. The internal destination could be either AX for an 8-bit source operand or the registers

pair DX AX for a 16-bit source operand. This operation is explained in table below:

Multiplication

 (MUL or IMUL)
Internal operand

External operand

(source)
Result

Byte * Byte AL
Register or BYTEPTR

of memory
AL*source = AX

Word * Word AX
Register or WORDPTR

of memory
AX*source = DX AX

The general format for the multiplication instructions is shown in table below:

Mnemonics Meaning Format Operation Flags affected

MUL Multiply MUL S
AL*S8 AX

AX*S16 DX AX

CF, OF

 AC, SF, PF, ZF undefined

IMUL Integer multiply IMUL S
AL*S8 AX

AX*S16 DX AX

CF, OF

 AC, SF, PF, ZF undefined

Where Q stands for Quotient and R stands for reminder.

Examples:

MUL BL ; AX=AL*BL.

IMUL CH ; AX=AL*CH.

MUL WORDPTR[BX+DI+1234h] ; DX AX=AX*The content of M.L. (16-bit) with an offset

of (BX+DI+1234h) as the low byte from

((BX+DI+1234h) and the high byte from

(BX+DI+1235h).

IMUL BYTEPTR[5000h] ; AX=AL*The content of M.L. (8-bit) with an offset of

(5000h).

MUL CX ; DX AX=AX*CX.

Important note: the MUL and IMUL instructions do not take the immediate addressing mode.

Now to understand the difference between MUL and IMUL instruction, first load IMUL AH and

put FFFFh in register AX. As a signed byte, FF= -1 so (-1 * -1 = +1). Trace the instruction and

see that AX=0001h. now load MUL AH and again set AX=FFFFh. Now FF=255, so

33

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

255*255=65025 or in Hex. FF*FF=FE01h. tracing this instruction gives AX=FE01h, as

expected. Only for byte factors less than 128 do MUL and IMUL give the same results.

Example 4: write an A.L.P. that multiplies two 16-bit numbers stored in BX and CX and store

the result in M.L.s specified by [2342h]?

Solution:

MOV AX, BX

MUL CX

MOV [2342h], AX

MOV [2344h], DX

HLT

H.W. 1: write an A.L.P. that multiplies two 16-bit numbers stored in 2 consecutive M.L.s

specified by [BX] then store the result in the next 4 M.L.s followed the 2 consecutive

numbers.

3.2.2.4 Division instructions: DIV and IDIV
The DIV (for unsigned numbers) and IDIV (for signed numbers) instructions are used to

perform the division operation between two operands: the source is external and the destination

is internal. The source may be either register or memory with data either 8-bit or 16-bit. The

internal destination could be either AX for an 8-bit source operand or the registers pair DX AX

for a 16-bit source operand. This operation is explained in table below:

Division

 (DIV or IDIV)
Internal operand

External operand

(source)
Result

Word / Byte AX
Register or BYTEPTR

of memory

AX / source = AX

 Q (AL)

 R(AH)

DWord / Word DX AX
Register or WORDPTR

of memory

(DX AX) / source = DX AX

Q (AX)

R (DX)

The general format for the multiplication instructions is shown in table below:

34

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Mnemonics Meaning Format Operation Flags affected

DIV Divide DIV S

AX/S8 Q(AL)

 R(AH)

DX AX/S16 Q(AX)

 R(DX)

CF, OF, AC, SF, PF, ZF

undefined

IDIV Integer divide IDIV S

AX/S8 Q(AL)

 R(AH)

DX AX/S16 Q(AX)

 R(DX)

CF, OF, AC, SF, PF, ZF

undefined

Examples:

DIV BL ; AX/BL Q(AL) and R(AH).

IDIV CH ; AX/CH Q(AL) and R(AH) .

DIV WORDPTR[BX+DI+1234h] ; (DX AX)/(The content of M.L. (16-bit) with an offset of

(BX+DI+1234h) as the low byte from ((BX+DI+1234h)

and the high byte from (BX+DI+1235h)) The

Q(AX) and R(DX).

 IDIV BYTEPTR[5000h] ; AX/(The content of M.L. (8-bit) with an offset of (5000h))

the Q(AL) and R(AH).

DIV CX ; (DX AX)/CX The Q(AX) and R(DX).

Important note: the DIV and IDIV instructions do not take the immediate addressing mode.

The division operation can result in two errors:

1. Division by zero.

2. Division overflow when a large 16-bit no. is divide by a small 8-bit no.. for example, the

division of 4000h by 04h, because the result of an 8-bit division must be fill in AL, while the

result of the last operation is 1000h that does not fit into AL.

To divide an 8-bit dividend by and an 8-bit divisor by extending the sign bit of AL to fill all bits

of AH. This can be done automatically by executing the instruction (CBW).

35

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

In a similar way, a 16-bit dividend in AX can be divided by 16-bit divisor. In this case the sign

bit in AX is extended to fill all bits of DX. The instruction (CWD) performs this operation

automatically.

Note that CBW extends 8-bit in AL to 16 bit in AX while the value in AX will be equivalent to

the vale in AL. similarly, CWD converts the value in AX to 32-bit in (DX AX) without changing

the original value. The general format of thes instructions is shown in table below:

Mnemonics Meaning Format Operation Flags affected

CBW
Convert byte to

word
CBW

Copy the MSB of AL to

all bits of AH
None

CWD
Convert word to

double word
CWD

Copy the MSB of AX

to all bits of DX
None

Example 4: write an A.L.P. to divide the 40 by 3 then explain its operation.

Solution:

MOV AX, 0028h ; AX=0028h

MOV BL, 03h ; BL=03h

DIV BL ; the explaining is below.

HLT

The Q of the division is 13 and in the Hex. it is D so AL=0Dh

The R of the division is 1 so AH=01.

The final result in AX=010Dh.

Example 5: what is the value of AX after executing the following instructions:

MOV AX, 0000h

MOV AL, FBh ; AX=00FBh

CBW

Since the MSB of AL=1 then, all bits of AH=1's. So the value of AH=FFh. Then AX=FFFBh

Example 6: what is the value of AX and DX after executing the following instructions:

MOV DX, 0000h

MOV AL, FFFBh ; DX AX = 0000 FFFB

CBW

 Since the MSB of AX=1 then, all bits of DX=1's. So the value of DX AX= FFFF FFFB.

36

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

H.W. 2: trace the following program:

MOV AX, 0324h

MOV BX, 0203h

MUL BL

DIV BH

CWD

HLT

Assume all flags are initially zeros

H.W. 3: write an A.L.P. to express the following equation:

X= (2*Y+
𝐙
𝟓

) – W2

Where X is a M.L. with an offset of 0500h. Assume Y=33h, Z=50h, and W=05h.

3.2.3 Logical Instructions

Logical instructions are bitwise instructions operating on the individual bits.

Typical logical operations include logical complement (NOT), logical and (AND),

logical or (OR), and logical exclusive or (XOR).

i. OR X,Y ; X = X + Y (X OR Y).

The truth table of OR gate can be shown below:

X Y O / P

0 0 0

0 1 1

1 0 1

1 1 1

Examples:

OR AX, BX

OR CX, 30h

OR BL, DH

37

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

OR BYTEPTR[5000h], 7Fh

Important note: Here we can use OR for setting bits of any data by putting 1's against the bits
that want to be set & the others are 0's.

Example 7: Set the 2'nd bit of reg. AL:

 AL = x x x x x x x x

 02 = 0 0 0 0 0 0 1 0
 we put 1 in the position

 of the 2'nd bit

So the solution will be:

OR AL, 02h

ii. AND X,Y ; X = X . Y (X AND Y).

The truth table of AND gate can be shown below:

X Y O / P

0 0 0

0 1 0

1 0 0

1 1 1

Examples:

AND AX, BX

AND CX, 30h

AND BL, DH

AND BYTEPTR[5000h], 7Fh

Important note: Here we can use AND for resetting(clearing) bits of any data by putting 0's
against the bits that want to be reset & the others are 1's.

38

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Example 8: Reset the 4'th and 11'th bits of reg. CX:

 CX = x x x x x x x x x x x x x x x x

 FBF7 = 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1

 we put 0's in the

 positions of 4'th and 11'th bits

So the solution will be:

AND CX,FBF7h

iii. XOR X,Y ; X = X ⊕ Y (X XOR Y).

The truth table of XOR gate can be shown below:

X Y O / P

0 0 0

0 1 1

1 0 1

1 1 0

Examples:

XOR AX, BX

XOR CX, 30h

XOR BL, DH

XOR WORDPTR[BX+SI+20h], 756Fh

Important note: Here we can use XOR for inverting bits of any data by putting 1's against the
bits that want to be inverted and the others are 0's.

39

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Example 9: Invert the 1'st & the 8'th bits of reg. DL:

 DL = x x x x x x x x

 81h = 1 0 0 0 0 0 0 1

 we put 1's in the

 positions of 1'st & 8'th bits

So the solution will be:

XOR DL,81h

iv. NOT X ; Take the 1's complement of X.

X O / P

0 1

1 0

Examples:

NOT SI ; invert all bits of reg. SI

NOT BL ; invert all bits of reg. BL

NOT WORDPTR[SI+1234h] ; invert all bits of the content of the 16-bit of the memory
locations specified by [SI+1234] as the low byte and
[SI+1235] as the high byte.

Example 10:: what is the value of AL after executing the following instruction:

MOV AL, C3h ; AL = 1100 0011 b

NOT AL

 AL = 0011 1100 b = 3Ch

Example 11: Rebuild the following instruction without using OR instruction.

OR AL,BL .

We can rebuild the instruction by using Boolean Algebra for the expression of or gate:

 O / P = AL + BL = BL AL ⋅

40

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

So the solution will be:

 NOT AL

 NOT BL

 AND AL,BL

 NOT AL

Important note: the NOT instruction does not take the immediate addressing mode.

The general formats for the logical instructions are shown in table below:

Mnemonics Meaning Format Operation Flags affected

OR Logical OR OR D, S (D) . (S) (D)
CF, OF, SF, PF, ZF

AC undefined

AND Logical AND AND D, S (D) + (S) (D)
CF, OF, SF, PF, ZF

AC undefined

XOR
Logical

Exclusive OR
XOR D, S (D) ⊕ (S) (D)

CF, OF, SF, PF, ZF

AC undefined

NOT Logical NOT NOT D (D) (D)

H.W. 1: trace the following program:

MOV AX, 0324h

MOV BX, 0203h

OR AX, BX

AND BX, 3C2F

XOR AX, DCAB

NOT BH

HLT

Assume all flags (Z, S, P) are initially zeros

H.W. 2: write an A.L.P. to express the following logical expression:

X= (Y⊕Z) . (W+55)

Where X is a M.L. with an offset of 0500h. Assume Y=33h, Z=50h, and W=05h.

H.W. 3: write an instructions that do the following:

 Rebuild

41

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

i. XOR AX, BX

ii. AND CX, SI

iii. XOR AX, FF

iv. NOT BYTEPTR [3500h]

3.2.4 Shifting and Rotating instructions

3.2.4.1 Shifting instructions

i. Logical Shifting

1. SHR op1,op2 . shift right op1(logical) by op2. The shift to the right can be done by enter

0 from the left and every bit jump to the other bit to the right & the (LSB) from right will

be transferred to the carry flag.

 CF

 0 ………………………….

 MSB LSB

2. SHL op1,op2 . shift left op1(logical) by op2. The shift to the left can be done by enter 0

from the right and every bit jump to the other bit to the left & the (MSB) will be

transferred to the carry flag.

 CF

 …………………………. 0

 MSB LSB

ii. Arithmetic Shifting
1. SAR op1,op2 . shift right (arithmetic). This instruction check the sign bit (MSB) & see if

0 enter zero from left if 1 enter one from left & keep the sign bit. i.e. copy the sign bit as

many times as shift & the (LSB) transferred to the carry flag.

 CF

 0 0 ………………………….

Enter zero if MSB = 0 MSB LSB

42

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

 CF

 1 1 ………………………….

Enter one if MSB = 1 MSB LSB

2. SAL op1,op2 . shift left op1(arithmetic) by op2. The shift to the left can be done by enter

0 from the right and every bit jump to the other bit to the left & the (MSB) will be

transferred to the carry flag.

 CF

 …………………………. 0

 MSB LSB

3.2.4.2 Rotating instructions
1. ROL op1, op2. Rotate data from right to left & the last bit (MSB) rotated from left

transferred to carry flag.

 CF

 ………………………….

 MSB LSB

2. ROR op1, op2. Rotate data from left to right & the last bit (LSB) rotated from right

transferred to carry flag.

 CF

 ………………………….

 MSB LSB

43

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

3. RCL op1, op2. Rotate data from right to left through carry & the old value of the carry

transferred to the (LSB).

 CF

 ………………………....

 MSB LSB

4. RCR op1, op2. Rotate data from left to right through carry & the old value of the carry

transferred to the (MSB).

 CF

 ………………………….

 MSB LSB

Example 12: Let AH = 1000 0000 & CF = 0, what is the result of AH & CF after executing the

following instructions?

INSTRUCTION RESULT CF

SHL AH,1

SHR AH,1

SAL AH,1

SAR AH,1

ROL AH,1

ROR AH,1

RCL AH,1

RCR AH,1

44

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Important Notes:

1. All rotation & shifting operations change the carry flag.

2. If we want to rotate or shift data for more than one time we must use CL register for this

purpose.

Example 13: Rotate reg. AX 6 times to the left without carry:

 MOV CL,06H

 ROL AX,CL

3. every n times shift to the right represent divide by 2n.

Example 14: Let AL = 0000 1000 = 08H

 SHR AL,1 AL = 0000 0100 = 04H

 SHR AL,1 AL = 0000 0010 = 02H

 SHR AL,1 AL = 0000 0001 = 01H

4. Every n times shift to the left represent multiply by 2n.

Example 15: Let AL = 0001 0000 = 10H

 SHL AL,1 AL = 0010 0000 = 20H

 SHL AL,1 AL = 0100 0000 = 40H

 SHL AL,1 AL = 1000 0000 = 80H

5. The SHL, SAL & SHR cause of losing data.

Example 16: Let BX = FFFFH

 So after executing the following instructions:

 MOV CL,10H

 SHR BX,CL

 BX = 0000H

6. The SAR cause either losing data or make all bits of data = 1

Example 17: Let AL = 0100 0100 = 44H

45

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

 MOV CL,07

 SAR AL,CL

 Since MSB = 0 the result will be AL = 0000 0000 = 00H.

Example 18: Let AL = 1001 0110 = 96H

 MOV CL,07

 SAR AL,CL

 Since MSB = 1 the result will be AL = 1111 1111 = FFH.

H.W. :Write a set of instructions to perform the following operations:
 7AL without using MUL instruction. (AL = 05H).
 Copy the value of 3rd bit in M.L. [2000] to all bits of reg. BH.

Example 19: Write an A.L.P. to copy the value of the 3rd bit of the memory location specified by

[BP+DI+33h] to all bits of register BX.

Sol.

MOV BX, [BP+DI+33h]

MOV CL, 0Dh

SHL BX, CL

MOV CL, 0Fh

SAR CX, CL

HLT

Example 20: Rebuild CBW.

Sol.

MOV AH, AL

MOV CL, 07

SAR AH, CL

HLT

46

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Example 21: Write an A.L.P. to rotate a 32-bit of data stored into DX AX registers to the left 1

time.

Sol.

ROL DX, 1

RCL AX, 1

ROR DX, 1

RCL DX, 1

HLT

H.W. 2: Write an A.L.P. to copy the value of the carry flag to all bits of a M.L. specified by

BX.

H.W. 3: Write an A.L.P. to rotate a 32-bit of data stored into DX AX registers to the right 1

time.

H.W. 4: Rebuild CWD.

3.2.5 Flag Control Instructions
The instruction set includes a group of instructions that when executed directly affects the state

of the flags. These instructions are shown in table below:

Mnemonics Meaning Format Operation Flags affected

CLC Clear carry flag CLC CF = 0 CF

STC Set carry flag STC CF = 1 CF

CMC Complement carry flag CMC CF = CF CF

CLD Clear direction flag CLD DF = 0 DF

STD Set direction flag STD DF = 1 DF

CLI Clear interrupt flag CLI IF = 0 IF

STI Set interrupt flag STI IF = 1 IF

LAHF and SAHF instructions
The LAHF and SAHF instructions are seldom used because they were designed as bridge

instructions. These instructions allowed 8085 (an early 8-bit microprocessor) software to be

translated into 8086 software by a translation program. Because any software that required

translation was completed many years ago, these instructions have little application today. The

47

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

LAHF instruction transfers the rightmost 8 bits of the flag register (status flags) into the AH

register. The SAHF instruction transfers the AH register into the status flags of the flag register.

Mnemonics Meaning Format Operation Flags affected

LAHF
Load AH reg. from

status flags
LAHF

AH = low byte of

flag reg.
none

SAHF
Store AH reg. in status

flags
SAHF

Low byte of flag

reg. = AH
SF,ZF,ACF,PF,CF

Figutre Flag Register

Example 22: Write an A.L.P. to square the value of the right byte of the flag register (status
flags).

Sol.

LAHF

MOV AL,AH

MUL AL or MUL AH

SAHF

HLT

3.2.6 Program Flow Control Instructions

The purpose of a jump instruction is to alter the execution path of instructions in

the program. The code segment register and instruction pointer keep track of the

next instruction to be fetched for execution.so a jump ivolves altering the contents

of either the IP register or CS and IP registers together. In this way an execution

continues at an address other than the next sequential instruction.

48

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

There are two types of jump instructions: unconditional jump and conditional

jump.

Unconditional Jump

This type of jump instruction (JMP) allows the programmer to skip sections of a

program and branch to any part of the memory for the next instruction. In an

unconditional jump, no status requirements are imposed for the jump to occur.

That is, as the instruction is executed, the jump always takes place to change the

execution sequence.

The general format of this instruction is shown below

Mnemonics Meaning Format Operation
Flags

affected

Jmp
Unconditional

jump

Jump

operand

Jump to the address

specified by

operand

none

The destination (target) operand specifies the addres of the instruction being jump

to. This operand can be immediate value, a general-purpose register, or a memory

location, according to this, the JMP instruction can be classified into:

a. Intrasegment: is limited with addresses within the current code segment.

b. Intersegment: permits jumps from one code segment to another.

Important Note: Jump instructions specified with a Short-Label, Near-Label,

Memptr 16 or Regptr16 represent intrasegment jumps while jump instructions

specified with a far-label and Memptr32 represent intersegment jumps.

According to that, the unconditional jumps can be classified into these types:

i. Short Jump: is a 2-byte instruction that allows jumps or branches to

memory locations within +127 and -128 bytes from the memory location

following the jump.

49

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex. JMP 32h

 IPnew=IPold+32h

Next address= CS*10+IPnew

JMP Displacement

Byte 1 Byte 2

ii. Near Jump: the 3-byte near jump allows a branch or jump within ±32K

bytes (anywhere) from the instruction in the current code segment.

JMP 1234h

 IPnew=IPold+1234h

Next address= CS*10+IPnew

JMP Disp. High Disp. Low

Byte 1 Byte 2 Byte 3

iii. Far Jump: the far jump obtains a new segment and offset address to

accomplish the jump. Notice that the operand (32-bit) specified with the

jump is a new values to the IP and CS and not a displacement as in short

and near jumps.

JMP 1456:F2E6h

After executing the instruction shown above, the following values will be

accomplished:

IP=F2E6h CS=1456h

Next address=CS*10+IPnew

iv. Reg16-bit or Mem16-bit: the unconditional jump address can also be

specified indirectly by the contents of a register or memory location.

JMP BX ; IPnew=BX

JMP [BX] ; IPnew(low)=[BX]

 ; IPnew(High)=[BX+1]

50

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

v. Mem32-bit:as using far jump here an indirect way is used to specify the

offset and code segment address and that done by using Mem32-bit

operand (four consecutive memory bytes starting at specified address).

JMP DWORD [BX] ; IP-low=[BX]

 ; IP-high=[BX+1]

 ; CS-low=[BX+2]

 ; CS-high=[BX+3]

Conditional Jump

The conditional jump depends on the values of the status flags i.e. (S,Z,O,P,C). for

this type of jump, the jump does not happen if the condition that affect the status

flags does not exist. Notice that these instructions are short jump instructions and

this limits the jump within +127 and -128 bytes from the loction following the

conditional jump. A list of each of the conditional jump instructions is shown in

the following table:
Mnemonics Meaning Condition

JA Above CF=0 and ZF=0

JAE Above or Equal CF=0

JB Belo CF=1

JBE Belo or Equal CF=1 or ZF=1

JC Carry CF=1

JCXZ CX register is zero CF=0 or ZF=0

JE Equal ZF=1

JG Greater ZF=0 and SF=OF

JGE Greater or Equal SF=OF

JL Less (SF xor OF)=1

JLE Less or Equal ((SF xor OF) or ZF)=1

JNA Not Above CF=1 or ZF=1

JNAE Not Above nor Equal CF=1

JNB Not Below CF=0

51

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

JNBE Not Below nor Equal CF=0 and ZF=0

JNC No Carry CF=0

JNE Not Equal ZF=0

JNG Not Greater ((SF xor OF) or ZF)=1

JNGE Not Greater nor Equal (SF xor OF)=1

JNL Not Less SF=OF

JNLE Not Less nor Equal ZF=0 and SF=OF

JNO No Overflow OF=0

JNP No Parity PF=0

JNS No Sign SF=0

JNZ No Zero Zf=0

JO Overflow OF=1

JP Parity PF=1

JPE Parity Even PF=1

JPO Parity Odd PF=0

JS Sign SF=1

JZ Zero ZF=1

Important notes:

• The terms Greater than and Less than refer to signed numbers, therefore

when signed numbers are compared; the JG, JL, JGE, JLE, JE, and JNE

are used.

• The terms Above and Below refer to unsigned numbers, therefore when

unsigned numbers are compared use JA, JB, JAE, JBE, JE, and JNE are

used.

According to the nature of there working, conditional jumps can be classified as:

i. If statement:

As mentioned before, the conditional jumps do not exist if the condition does

not exist.

If Condition is existed the condition depends on the type of the conditional

52

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Jump to LABEL jump

Continue program

JMP END

LABEL: certain instructions

END: HLT

Ex.1:

MOV AX,2500h

MOV BX,2006h

ADD AX,BX

JP *

MOV CL,02h

JMP END

*: MOV CL,01h

END: HLT

Ex.2:

MOV AX,5454h

CMP AL,AH

JZ *

MOV BYTEPTR[3000h],01h

JMP END

*: MOV BYTEPTR[3000h],02

END HLT

53

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex.3: Write an A.L.P. to check the contents of a M.L. specified by [SI] if it is

below or equal (50h) then put (01h) in reg. BL. Else put (02h) in reg. BL.

Sol.

CMP BYTEPTR[SI],50h

JBE *

MOV BL,02h

JMP END

*: MOV BL,01h

END: HLT

EX. 4: Write an A.L.P. to check the number stored in a M.L. specified by

[BX+DI+2673h] if it is +ve put (01h) in reg. CH, if it is equal zero put (02h) in

reg. CH, else put (03h) in reg. CH.

Sol.

CMP BYTEPTR[BX+DI+2673],00H

JE *

JA **

MOV CH,03

JMP END

*: MOV CH,01H

JMP END

**: MOV CH,02

END HLT

54

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

ii. Loop Program:

In computer programming, a loop is a sequence of instructions that is continually

repeated until a certain condition is reached. Typically, a certain process is done,

such as getting an item of data and changing it, and then some condition is checked

such as whether a counter has reached a prescribed number. If it hasn't, the next

instruction in the sequence is an instruction to return to the first instruction in the

sequence and repeat the sequence. If the condition has been reached, the next

instruction 'falls through' to the next sequential instruction or branches outside the

loop. A loop is a fundamental programming idea that is commonly used in writing

programs.

There are two types of loop programming structure. These are:

i. Descending Loop:

This loop starts with the final value of the counter then decremented by one

and check whether the counter equal zero or not. If it is not zero then, return

and continue the program. If it is reached zero, it will end the loop and

continue the program.

Ex. From C++ a descending loop is like the following:

for (i=10; i > 0; i--)

In assembly language in general, the CX and CL registers are used for the

counter instead of the variables in the loop programs.

MOV CL,0Ah or MOV CX, 000Ah

.
*
.
.
DEC CL
JNZ *
.
(CONTINUE PROGRAM)
.
HLT

55

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

ii. Ascending Loop:

This loop starts with the least value of the counter then incremented by one

and copamre whether the counter reaches its final value or not. If it is not

reached then, return to the loop program and continue. If it is equal to the final

value then, end the loop and continue the program.

Ex. From C++ a descending loop is like the following:

for (i=1; i ≤ 15; i++)

Again, in assembly language in general, the CX and CL registers are used for

the counter instead of the variables in the loop programs.

MOV CL,01h or MOV CX, 0001h

.
*
.
.
INC CL
CMP CL, 0Fh
JNZ *
.
(CONTINUE PROGRAM)
.
HLT

Ex. 4:Write an A.L.P. to find the average of a student of 8 degrees. The degrees

stored in an M.L. starts at [5000h].

Sol.

MOV CL, 08h ; Initialize the counter.

MOV AL, 00h ; The summation of the degrees must equal zero.

MOV AH, 00h

MOV DI, 5000 ; Put the value of the 1st address in (DI or SI or BX)

 i.e. use (DI, SI, and BX) as a pointer to the memory.

*: ADC AL, BYTEPTR[DI] ; Summation for the degrees.

DEC CL

JNZ *

56

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

MOV BL, 08h

DIV BL ; calculate the average by dividing the summation

HLT which is now in (AX) by number of degrees (8)

 degrees

Ex. 5: Write an A.L.P. to move a block of 12 bytes of data starting at offset

address [3500h] to another block starting at offset address [7080h]. Assume that

both blocks are in the same segment whose starting address is 1234h.

Sol.

MOV AX,1234h

MOV DS, AX

MOV SI, 3500h

MOV DI, 7080h

MOV CL, 0Ch

#: MOV DL, [SI]

 MOV [DI], DL

INC SI

INC DI

DEC CL

JNZ #

HLT

H.W. 1: Write an A.L.P. that multiplicities a block of 20 bytes (vector of M.L.s) of

data starts at an offset address [4000h] with another vector of M.L.s starts at an

offset address of [8858h] then put the results in a third vector starts [8000h].

Assume that all of the three vectors are in the same segment that’s its start address

is DATASEGM.

57

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Subroutines:
Subroutine is a sub program needed to perform a particular sub-task many times

on different data values. Instead of putting this program in the main program,

subroutine can be stored in a specified M.L. of the memory and called it using a

CALL instruction. Whenever this sub-program needed to be executed, there is no

need to write this program again and again, just call it and execute it.

When the program called a subroutine, executed it then, it should return to the

main program. This operation can be done by putting the RET instruction at the

end of the subroutine.

CALL Instruction:
The CALL instruction is a special branch instruction that performs the following

operations:

• Push the contents of the next instruction address (IP) on the top of the stack.

• Update the stack pointer (SP).

• Branch to the target address specified by the CALL instruction.

Important Note: The CALL instruction is similar to the JMP instruction, that it is

intrasegment and intersegment. The general format of the CALL instruction is

shown in the following table:
Mnemonics Meaning Format Operation Flags affected

CALL Subroutine Call
CALL

Operand

Execution continues from the

address of the subroutine

specified by the operand.

None

Operand may be one of the: Near, Far, REG16, Mem16, Mem32).

Near Call: Execution of a near CALL causes the contents of the IP to be saved in

the stack, and a new 16-bit value which corresponds to the address of the first

subroutine instruction to be into IP register.

e.g. CALL 1453h

58

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Far CALL: Execution of Far CALL causes the contents of IP and CS registers to

be stored in the stack respectively and a new 32-bit value for code segment and

offset to be loaded into IP and CS registers.

e.g. CALL 1781:2712h

Indirect CALL: (Reg16, Mem16, Mem32).

e.g.s CALL BX

 CALL [BX]

RET Instruction:
The Return instruction (RET) is a special branch instruction that performs the

following operations:

• Pop the return address from the top of the stack.

• Update the stack pointer (SP).

The RET instruction removes the 16-bit number (near return) from the stack and

places it into IP, or removes a 32-bit number. (far return) and places it into IP and

CS.

Subroutine Structure:

Main program

.

.

CALL SUB

Continue program

HLT

SUB.

Program instructions

.

.

RET

59

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex.6: repeat Ex.5 using subroutine.

Sol.
MOV AX,1234h

MOV DS, AX

MOV SI, 3500h

MOV DI, 7080h

MOV CL, 0Ch

#:CALL Copy

INC SI

INC DI

DEC CL

JNZ #

HLT

Copy: MOV DL, [SI]

MOV [DI], DL

RET

H.W. 2: Repeat H.W. 1 using subroutine.

The Stack

The stack is a temporary storage originally used to preserve return addresses when

a subroutine is called. It is so convenient for temporary storage that it is used to

save the contents of certain registers or some other main program parameters.

The instruction that is used to save parameters on the stack is PUSH instruction

and the instruction that is used to retrieve them from the stack is the POP

instruction. The standard formats of these instructions are shown in the following

table:

60

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Mnemonics Meaning Format Operation Flags affected

PUSH
Save word onto

stack
PUSH S

S M.L. specified

by SP
None

POP
Retrieve word

off stack
POP D

M.L. specified by

SP D
None

Important Note:

• The allowed operands are (general purpose registers, a segment register

(excluding CS), or a storage location in memory).

• PUSH and POP instructions always store or retrieve WORDS of data only.

The work of stack is organized in the form of First In Last Out (FILO) or Last In

First Out (LIFO).

Ex.s:

PUSH AX

PUSH [BX+50h]

POP DS

POP [SI]

Offsets of The Stack

i. SP register

Represents the top of the stack and it is affected by every PUSH and POP

operations.

For PUSH instruction the SP register will be decremented by 2.

SPnew= SPold – 2

61

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex.s: Assume SP=5006h, DX=F736h.

PUSH DX ; DH (SP-1)

 ; DL (SP-2)

 XX [5002h]

 XX [5003h]

 DL 36 [5004h]

 DH F7 [5005h]

Top of stack (SP) XX [5006h]

The new value of the SP will be: SP=5004h.

For POP instruction the SP register will be incremented by 2.

SPnew= SPold + 2

Ex.s: Assume SS=3000h, SP=7000h.

POP AX ; (SP+1) AH

 ; (SP+2) AL

PA=SS*10h+SP

 = 3000*10+7000h

 =37000h

Top of stack (SP) XX [37000h]

 AH 55 [37001h]

 AL 36 [37002h]

 XX [37003h]

 XX [37004h]

AX=5536h

SP=7002h

62

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

ii. BP register

If anyone wants to reach a certain memory location in the stack (i.e. not the top of

the stack) then, the BP register will be used. The BP used for the random access of

a certain M.L. in the stack.

Ex. 1: Write A.L.P. to put 507Dh in register CX. Assume the top of the stack is

6040h in a segment of memory which its start is 15DDh using stack operations.

Sol.

MOV AX, 15DDh

MOV SS, AX

MOV SP, 6040h

MOV AX, 507Dh

PUSH AX

POP CX

HLT

Ex. 2: You have AX=1234h, BX=3200h, SP=120Ah. What are the values of AX,

BX CX, DX, and SP after executing the following program:

PUSH AX

PUSH BX

POP CX

PUSH BX

POP DX

HLT

AX=1234h BX=3200h CX=3200h DX=3200 SP=1208h.

63

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex. 3: Write an A.L.P. to store the following sequence in the stack: 0, 1, 4, 5.

Assume the start of the stack segment and offset is 1000:0500.

Sol.

 MOV AX, 1000h

 MOV SS, AX

 MOV SS, 0500h

 MOV BX, 0000h

 MOV CL, 02h

 ROR BX, CL

 JC *

 ROL BX, CL

 PUSH BX

*: INC BX

 CMP BX, 0006h

 JNZ #

 HLT

3.2.7 String and String-Handling Instructions
The 8086 microprocessor is equipped with special instructions to handle string

operations. String means a series of data words (or bytes) that reside in consecutive

memory locations. There are many string instructions in the instruction set of 8086,

four of these instructions are discussed here.

1. MOVSB, MOVSW:

 An element specified by the (SI) reg. in the current data segment (DS) reg. is

moved to the locations specified by the (DI) reg. in the current (ES) reg. . The

move can be performed on a byte or a word of data.

64

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

MOVSB (8-bit) (1 byte)

This instruction will move a byte of data from the M.L. in data segment specified

with SI as the source of data to a M.L. in extra segment specified with DI as the

destination for data.

 MOVSB ; move byte from (DS:SI) to (ES:DI) .

For DF = 0,

 SI = SI + 1 , DI = DI + 1

For DF = 1,

 SI = SI – 1 , DI = DI – 1

MOVSW (16-bit) (2 byte)

This instruction will move a word of data from the M.L. in data segment specified

with SI as the source of data to a M.L. in extra segment specified with DI as the

destination for data.

 MOVSW ; move word from (DS:SI) to (ES:DI) & (DS: SI + 1) to (ES:DI +

1).

For DF = 0,

 SI = SI + 2 , DI = DI + 2

For DF = 1,

 SI = SI – 2 , DI = DI – 2

2. CMPSB, CMPSW:

 These instructions can be used to compare two elements in the same or different

strings. It subtracts the content of (ES : DI) from the content of (DS : SI) and

adjusts flags (CF, PF, AF, ZE, SF, & OF). The result of subtraction is not saved

but it affects on the flag reg. (FX) only.

65

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

 CMPSB ; compare the string content byte in (DS:SI) with the content of

(ES:DI) .

For DF = 0,

 SI = SI + 1 , DI = DI + 1

For DF = 1,

 SI = SI – 1 , DI = DI – 1

 CMPSW ; compare the string content word in (DS:SI) with the content of

(ES:DI) and (DS:SI+1) with the content of (ES:DI+1).

For DF = 0,

 SI = SI + 2 , DI = DI + 2

For DF = 1,

 SI = SI – 2 , DI = DI – 2

3. STD: make DF = 1 .

4. CLD: make DF = 0 .

Ex.1: Write an A.L.P. to perform the following operation:

[13600h] xx xx [22700h]

 2xx

66

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

i.e. move byte from the 1st memory to the 2nd memory and move the double of

the same byte to the 2nd memory location of the 2nd vector. The 1st vector of the

memory is about 8 elements.

Ex.2: Write an A.L.P. to find the number of students that had the same marks in

two exams. The marks of the first exam is stored in data segment starting at offset

1000. While the marks of the second exam is stored in extra segment starting at

offset 2000. NOTE DS = 2500 and ES = 3000. Total number of students is 50

(decimal).

67

