
Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

ii. Loop Program:

In computer programming, a loop is a sequence of instructions that is continually

repeated until a certain condition is reached. Typically, a certain process is done,

such as getting an item of data and changing it, and then some condition is checked

such as whether a counter has reached a prescribed number. If it hasn't, the next

instruction in the sequence is an instruction to return to the first instruction in the

sequence and repeat the sequence. If the condition has been reached, the next

instruction 'falls through' to the next sequential instruction or branches outside the

loop. A loop is a fundamental programming idea that is commonly used in writing

programs.

There are two types of loop programming structure. These are:

i. Descending Loop:

This loop starts with the final value of the counter then decremented by one

and check whether the counter equal zero or not. If it is not zero then, return

and continue the program. If it is reached zero, it will end the loop and

continue the program.

Ex. From C++ a descending loop is like the following:

for (i=10; i > 0; i--)

In assembly language in general, the CX and CL registers are used for the

counter instead of the variables in the loop programs.

MOV CL,0Ah or MOV CX, 000Ah

.
*
.
.
DEC CL
JNZ *
.
(CONTINUE PROGRAM)
.
HLT

59

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

ii. Ascending Loop:

This loop starts with the least value of the counter then incremented by one

and copamre whether the counter reaches its final value or not. If it is not

reached then, return to the loop program and continue. If it is equal to the final

value then, end the loop and continue the program.

Ex. From C++ a descending loop is like the following:

for (i=1; i ≤ 15; i++)

Again, in assembly language in general, the CX and CL registers are used for

the counter instead of the variables in the loop programs.

MOV CL,01h or MOV CX, 0001h

.
*
.
.
INC CL
CMP CL, 0Fh
JNZ *
.
(CONTINUE PROGRAM)
.
HLT

Ex. 4:Write an A.L.P. to find the average of a student of 8 degrees. The degrees

stored in an M.L. starts at [5000h].

Sol.

MOV CL, 08h ; Initialize the counter.

MOV AL, 00h ; The summation of the degrees must equal zero.

MOV AH, 00h

MOV DI, 5000 ; Put the value of the 1st address in (DI or SI or BX)

 i.e. use (DI, SI, and BX) as a pointer to the memory.

*: ADC AL, BYTEPTR[DI] ; Summation for the degrees.

DEC CL

JNZ *

60

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

MOV BL, 08h

DIV BL ; calculate the average by dividing the summation

HLT which is now in (AX) by number of degrees (8)

 degrees

Ex. 5: Write an A.L.P. to move a block of 12 bytes of data starting at offset

address [3500h] to another block starting at offset address [7080h]. Assume that

both blocks are in the same segment whose starting address is 1234h.

Sol.

MOV AX,1234h

MOV DS, AX

MOV SI, 3500h

MOV DI, 7080h

MOV CL, 0Ch

#: MOV DL, [SI]

 MOV [DI], DL

INC SI

INC DI

DEC CL

JNZ #

HLT

H.W. 1: Write an A.L.P. that multiplicities a block of 20 bytes (vector of M.L.s) of

data starts at an offset address [4000h] with another vector of M.L.s starts at an

offset address of [8858h] then put the results in a third vector starts [8000h].

Assume that all of the three vectors are in the same segment that’s its start address

is DATASEGM.

61

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Subroutines:
Subroutine is a sub program needed to perform a particular sub-task many times

on different data values. Instead of putting this program in the main program,

subroutine can be stored in a specified M.L. of the memory and called it using a

CALL instruction. Whenever this sub-program needed to be executed, there is no

need to write this program again and again, just call it and execute it.

When the program called a subroutine, executed it then, it should return to the

main program. This operation can be done by putting the RET instruction at the

end of the subroutine.

CALL Instruction:
The CALL instruction is a special branch instruction that performs the following

operations:

• Push the contents of the next instruction address (IP) on the top of the stack.

• Update the stack pointer (SP).

• Branch to the target address specified by the CALL instruction.

Important Note: The CALL instruction is similar to the JMP instruction, that it is

intrasegment and intersegment. The general format of the CALL instruction is

shown in the following table:
Mnemonics Meaning Format Operation Flags affected

CALL Subroutine Call
CALL

Operand

Execution continues from the

address of the subroutine

specified by the operand.

None

Operand may be one of the: Near, Far, REG16, Mem16, Mem32).

Near Call: Execution of a near CALL causes the contents of the IP to be saved in

the stack, and a new 16-bit value which corresponds to the address of the first

subroutine instruction to be into IP register.

e.g. CALL 1453h

62

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Far CALL: Execution of Far CALL causes the contents of IP and CS registers to

be stored in the stack respectively and a new 32-bit value for code segment and

offset to be loaded into IP and CS registers.

e.g. CALL 1781:2712h

Indirect CALL: (Reg16, Mem16, Mem32).

e.g.s CALL BX

 CALL [BX]

RET Instruction:
The Return instruction (RET) is a special branch instruction that performs the

following operations:

• Pop the return address from the top of the stack.

• Update the stack pointer (SP).

The RET instruction removes the 16-bit number (near return) from the stack and

places it into IP, or removes a 32-bit number. (far return) and places it into IP and

CS.

Subroutine Structure:

Main program

.

.

CALL SUB

Continue program

HLT

SUB.

Program instructions

.

.

RET

63

Programming the 8086 Microprocessor prepared by: Eng. Mohammed Ali Saffah

Ex.6: repeat Ex.5 using subroutine.

Sol.
MOV AX,1234h

MOV DS, AX

MOV SI, 3500h

MOV DI, 7080h

MOV CL, 0Ch

#:CALL Copy

INC SI

INC DI

DEC CL

JNZ #

HLT

Copy: MOV DL, [SI]

MOV [DI], DL

RET

H.W. 2: Repeat H.W. 1 using subroutine.

64

