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  Chapter one  

Signals and Systems in communication  

1.1 introduction; 
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1.2   The Signals  

 Any time varying physical phenomenon that can convey information is called 

signal. Some examples of signals are human voice, electrocardiogram, sign 

language, videos etc. There are several classification of signals such as 

Continuous time signal, discrete time signal and digital signal, random signals 

and non-random signals. 

1.2 classifications of signals 

a. Analog signals   

(1) Continuous-time Signal: 

A continuous-time signal is a signal that can be defined at every instant of 

time. A continuous-time signal contains values for all real numbers along the 

X-axis. It is denoted by x(t). Figure 1(a) shows continuous-time signal. 
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(2) Discrete-time Signal: 

Signals that can be defined at discrete instant of time is called discrete time 

signal. Basically discrete time signals can be obtained by sampling a 

continuous-time signal. It is denoted as x(n).Figure 1(b) shows discrete-time 

signal. 

                             a                                                            b 

Fig.1(a) Continuous-time signal                   (b) Discrete-time signal  

The signals of  Continuous vs. Discrete may be the simplest classification to 

understand as the idea of discrete-time and continuous-time is one of the 

most fundamental properties to all of signals and system. 

A system where the input and output signals are continuous is a continuous 

system , and one where the input and ouput signals are discrete is a discrete 

system . 

b. Digital Signal: 

The signals that are discrete in time and quantized in amplitude are called 

digital signal. The term "digital signal" applies to the transmission of a 

sequence of values of a discrete-time signal in the form of some digits in the 

encoded form. 

                Amplitude   

 
Fig(2) binary digital signal 
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Analog vs. Digital 

The difference between analog and digital is similar to the difference between 

continuous time and discrete-time. In this case, however, the difference is 

with respect to the value of the function (y-axis). Analog corresponds to a 

continuous y-axis, while digital corresponds to a discrete y-axis. An easy 

example of a digital signal is a binary sequence, where the values of the 

function can only be one or zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Periodic and Aperiodic Signal:  

A signal is said to be periodic if it repeats itself after some amount of 

time x(t+T)=x(t), for some value of T. The period of the signal is the minimum 

value of time for which it exactly repeats itself.  
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                 Fig.3(a) Periodic signal   Fig.3(b)  Aperiodic signal 

  

Signal which does not repeat itself after a certain period of time is called 

aperiodic signal. The periodic and aperiodic signals are shown in Figure 3(a) 

and 3(b) respectively. 

 

The topic of sinusoidal signal has already been introduced. Hence the 

description is kept brief. The waveform of a sinusoidal signal is shown in   

Fig. 4. 

 
                         Fig(4) periodic sinusoidal signal  

 A periodical signal, f(t) with a period of T, repeats itself every T seconds. A 

signal is periodic if 
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A square wave-signal, shown in Fig. 5, is a periodic signal.   

 

             Fig(5) aperiodic symmetric square-wave signal  

Periodic signals repeat with some period T, while aperiodic, or nonperiodic, 

signals do not. 

We can define a periodic function through the following mathematical 

expression, where t can be any number and T is a positive constant: 

f (t) = f (T + t)  

The fundamental period of our function, f (t), is the smallest value of T that 

the still allows the above equation, Equation 2.7, to be true. 

 

d. Random and Deterministic Signal: 

A random signal cannot be described by any mathematical function, where as 

a deterministic signal is one that can be described mathematically. A 

common example of random signal is noise. Random signal and deterministic 

signal are shown in the Figure 6(a) and 6(b) respectively. 
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                          a                                                             b                                                

  Fig.6(a) Random signal         Fig.6(b) Deterministic signal 

 

A signal whose physical description is known completely, in either a 

mathematical form or a graphical form is said to be a deterministic signal. 

A signal that is known only in terms of probabilistic description, such as mean 

value, mean squared value, and so on, is said to be a random signal. 

Most of the noise signals encountered in practical situations are random 

signals. 

All message signals in communication systems are random signals, because 

some uncertainty (randomness) about the message must exists such that the 

signal conveys information from the sender to the receiver. 

 

e. Causal, Non-causal and Anti-causal Signal: 

  

Signal that are zero for all negative time, that type of signals are called causal 

signals, while the signals that are zero for all positive value of time are called 

anti-causal signal. 

A non-causal signal is one that has non zero values in both positive and 

negative time. Causal, non-causal and anti-causal signals are shown below in 

the Figure 7(a), 7(b) and 7(c) respectively. 
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A causal system is one that is nonanticipative ; that is, the output may 

depend on current and past inputs, but not future inputs. All ”realtime” 

systems must be causal, since they can not have future inputs available to 

them. 

 

 
 

Fig.7(a) Causal 

signal 
Fig.7(b)Non-causal signal        Fig.7(c) Anti-causal signal  

 

 Causal signals are signals that are zero for all negative time, while anitcausal 

are signals that are zero for all positive time. Noncausal signals are signals 

that have nonzero values in both positive and negative time 

f. Even and Odd Signal: 

  

An even signal is any signal 'x' such that x(t) = x(-t). On the other hand, an 

odd signal is a signal 'x' for which x(t) = -x(-t). Even signals are symmetric 

around the vertical axis, so that they can easily spotted. 

Figure 8(a) and 8(b) shows the odd signal and even signal 

respectively.                                                                  

 

 

        Fig.8(a) Odd signal           Fig.8(b) Even signal 
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A signal x(t) is said to be an even signal its value is symmetrical about the 

vertical axis, i.e. x(-t) = x(t) 

A signal x(t) is said to be an odd signal if its value is anti-symmetrical about 

the horizontal axis, i.e. x(-t) = - x(t) 

Examples of even and odd signals are shown in the figure (a) and (b), 

respectively. 

 

1.3 energy and power signals  

1.3.1 Energy signal 

Some signals qualify to be classified as energy signals, whereas some other 

signals qualify to be classified as power signals. Given a continuous-time 

signal f(t), the energy contained over a finite time interval is defined as 

follows.  

 

 

The first Equation   defines the energy contained in the signal over time 

interval from T1 till T2. On the other hand, the second equation   defines the 

total energy contained in the signal. If the total energy of a signal is a finite 

non-zero value, then that signal is classified as an energy signal. Typically 

the signals which are not periodic turns out to be energy signals. For 
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example, a single rectangular pulse and a decaying exponential signal are 

energy signals. 

1.3.2 Power signal 

When a reference to power in a signal is made, it points to the average 

power. Power is defined as energy per second. For a continuous-time signal, 

we can obtain an expression for power from equation above .  

 

 

Most of the periodic signals tend to be power signals. Given the period of a 

cycle, the power of a periodic signal can be defined by first equation  .  and  

can be used to find the power of a dc signal also. The dc signal is also a 

power signal. If power of a signal is a finite non-zero value and its energy is 

infinite, then that signal is classified as a power signal. There are some 

signals which can be classified neither as power signals nor as energy 

signals. For example, a ramp signal defined from zero till infinity is neither a 

power signal nor an energy signal, since both power and energy of ramp 

signal is not bounded. But in practice. such a signal cannot exist and hence 

such a signal is not of any practical importance.  

 

14



Example 1: 

Given an exponential signal as defined by equation (3.12), find its energy.  

 

Solution: 

 

 An exponential signal is an energy signal, since its energy is a finite, non-
zero value 

Example 2  

Given a sinusoidal signal as defined by equation (3.14), find its power. 

 

Solution: 

 

The solution is expressed by equation (3.15). A sinusoidal signal is a power 

signal, since the its power over a cycle is a finite, non-zero value. The energy 

associated with the sinusoidal signal is infinite.  

Example 3  

Given a square-wave signal as defined by equation (3.15), find its power. 
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Solution: 

 

The solution is expressed by equation (3.18). A periodic square-wave signal 

is a power signal, since the its power over a cycle is a finite, non-zero value. 

The energy associated with the square-wave signal is infinite.  

Example  4 
 determine if the following signals are Energy signals, Power signals, or 
neither, and evaluate E and P for each signal  

 
 a) ( ) 3sin(2 ),a t t t   , 
 
 This is a periodic signal, so it must be a power signal. Let us    prove it. 
 

  

 

2 2| ( ) | | 3sin(2 ) |

1
9 1 cos(4 )

2

1
9 9 cos(4 )

2

J

aE a t dt t dt

t dt

dt t dt
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 

 
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 

 

 

 

 

 

 



 
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Notice that the evaluation of the last line in the above equation is infinite 
because of the first term. The second term has a value between –2 to 2 so it 
has no effect in the overall value of the energy. 

 
Since a(t)  is periodic with period T = 2/2 = 1 second, we get 

 

  

 

1 1

2 2

0 0

1

0

0 1

0 0

1

0

1
| ( ) | | 3sin(2 ) |

1

1
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2

1
9 9 cos(4 )

2
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2 4

9
W

2
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t
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 
   

 



 



 
 

 
So, the energy of that signal is infinite and its average power is 
finite (9/2). This means that it is a power signal as expected. 
Notice that the average power of this signal is as expected (square 
of the amplitude divided by 2) 

 

 b) 
2| |( ) 5 ,tb t e t    , 

 
  Let us first find the total energy of the signal. 
 

  

2
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The average power of the signal is 
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So, the signal b(t)  is definitely an energy signal. 
So, the energy of that signal is infinite and its average power is finite (9/2). 
This means that it is a power signal as expected. Notice that the average 
power of this signal is as expected (the square of the amplitude divided by 2) 
 

 c) 

34 , | | 5
( )

0, | | 5
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c t
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 d) 

1
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  Let us first find the total energy of the signal. 
 

  
 

2

1
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t
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So, this signal is NOT an energy signal. However, it is also NOT a power 
 signal since its average power as shown below is zero. 
   

The average power of the signal is 

   

/ 2 / 2

2

/ 2 1

/ 2

1

1 1 1
lim | ( ) | lim

1 1 1
lim ln lim ln ln 1
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   
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 

 

Using Le’hopital’s rule, we see that the power of the signal is zero. That is 
 

2ln
2

lim lim 0
1

d
T T

T

TP
T 

    
         
   
    

 

 
So, not all signals that approach zero as time approaches positive and 
negative infinite is an energy signal. They may not be power signals either. 

 

 e) 
2( ) 7 ,e t t t     , 

 
 f) 2( ) 2cos (2 ),f t t t    . 
 

 g) 
212cos (2 ), 8 31

( )
0, elsewhere

t t
g t

   
 


. 

 
 

Example: Which of the following signals is an energy signal and which is a 

power signal? 
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Properties of Energy and Power Signals 

A signal with finite energy has a zero power, i.e. an energy signal cannot be a 

power signal. 

A signal with finite power has an infinite energy, i.e. a power signal cannot be 

an energy signal. 

Therefore, a signal cannot be both an energy signal and a power signal. 

On the other hand, some signals are neither energy signals nor power 

signals; the ramp signal is such an example. 

Every signal that is generated in the lab is an energy signal, i.e. every signal 

in real life is an energy signal. 

On the other hand, a power signal must necessarily have an infinite duration 

and an infinite energy such that its average power reaches a finite (non-zero) 

value in the limit; a true power signal is therefore impossible to generate in 

real life. 

All the periodic signals for which the energy in one period is finite are power 

signals. 

However, not all power signals are periodic; there exists some power signals 

that are aperiodic. 
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Example:  

Classify the following signal(s) as a power signal, energy signal, or neither 

and find its power or energy 

as appropriate  x(t) = e−t;   

 

Solution: 

 
∴ Since this signal has infinite energy and power signals, it is neither an 

energy nor a power signal. 

1.4 Time-Shifting of Signal: 

In signals and system amplitude scaling, time shifting and time scaling are 

some important properties. If  a continuous time signal is defined as x(t) = s(t 

- t1). Then we can say that x(t) is the time shifted version of s(t). 

Consider a simple signal s(t) for 0 < t < 1 

 

 
 

 

            Fig.8(a) Signal  

             within 0< t < 1 

Fig.8(b)  

Signal shifted    

by 2 sec. 

Fig.8(c) Signal shifted 

 by -1 sec. 
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 Now shifting the function  by time t1 = 2 sec. 

   x(t) = s (t-2) = t-2                     for     0 < (t - 2) < 1 

                        = t-2                       for   2  < (t - 2 ) < 3                                       

Which is simply signal s(t)  with its origin delayed by 2 sec. 

Now if we shift the signal by t1 = -1 sec. 

             then x(t) = s (t+1) = t+1     for      0 < (t+1) 

                                         = t+1     for     -1 < t < 0. 

                                                     

Which is  simply s(t) with its origin shifted to the left or advance in time 

by 1 seconds. This time-shifting property of signal is shown in the Figure 8(a), 

8(b) and 8(c) given above. 

 

  1.5 Time-Scaling of Signal: 

Time scaling compresses or dilates a signal by multiplying the time variable 

by some quantity. If that quantity is greater than one, the signal becomes 

narrower and the operation is called compression. If that quantity is less than 

one, the signal becomes wider and the operation is called dilation. Figure 

7(a), 7(b), 7(c) shows the signal x(t), compression of signal and dilation of 

signal respectively. 

 

 

 

Fig.7(a) Signal x(t) Fig.7(b) Compression of signal Fig.7(c) Dilation of signal 

                       

For each signal x(t) of Figure below , 
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sketch the following: (a) p(t) = x [0.5 (t − 2)]; (b) h(t) = x (2 − 2t); (c) s(t) = x 

(−0.5t − 1) 

Solution: 

(a) p(t) = x [0.5 (t − 2)] 

 
 

(b) h(t) = x (2 − 2t) = x (−2t+2) = x [−2 (t − 1)] 
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 (c) s(t) = x (−0.5t − 1) = x [−0.5 (t+2)] = x [−0.5 (t − (−2))] 
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Chapter two 

Fourier transform and its applications 

2.1  Introduction  

We have seen in Fourier series  how to decompose a signal in the 
time domain into its harmonic components when the signal is a 
periodic function that has a well-defined fundamental period T (and 
frequency    = 2 π /T ). This gives a discrete spectrum (set of 
frequencies). 
But many signals when represented in the frequency domain have a 
continuous spectrum. These represent signals in the time domain that 
do not have a single fundamental frequency. That is they are not 
periodic functions. 
Of course, in engineering, most signals are not periodic; e.g. the 
accelerations in earthquake, random vibrations, chaotic outputs of 
simple nonlinear circuits, freak waves such as tsunamis the Severn 
bore, etc.. . . 
 
Fourier series are applicable only to periodic functions but non-
periodic functions can also be decomposed into Fourier components - 
this process is called a Fourier Transform. 
So, we need a technique to find the frequency content of an arbitrary 
function f(t). The only stipulation is that the signal contain a “finite 
amount of energy”.   
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Definition: We say that F(  ) is the Fourier transform of f(t) 
and f(t) is the inverse Fourier transform of F(  ). 
Sometimes f(t) and F( ) are called a Fourier transform pair 
and written: 

f(t)               F(  ) 
 

Example 1 
 Using the Fourier Transform integral equation, directly find the  
Fourier Transform of    
                                  x(t) =       u(t), a> 0 
solution  
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 2.2  Properties of the Fourier transform ; 
 
        a.   Linearity 
 
 If f(t), g(t) are functions with transforms F(ω), G(ω), respectively, 
then 
                  • F{f (t) + g(t)} = F(ω) + G(ω) 
 
Example; 

 
 
b. Shift properties 
 
There are two basic shift properties of the Fourier Transform: 
(i) Time shift property: 
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Here t0, ω0 are constants. In words, shifting (or translating) a function 
in one domain corresponds to a multiplication by a complex 
exponential function in the other domain. 
We omit the proofs of these properties which follow from the definition 
of the Fourier Transform. 
 
Example Use the time-shifting property to find the Fourier Transform 
of the function 
 

 
 
Example  
Compute the Fourier transform of f(t) 
 

 
Solution 
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A more compact notation 
 
In many applications you will find that a more compact notation is 
used for the Fourier series. Using the identity 
 
 

 
Example  
Find the Fourier Transform of cos(ω0t) 
Solution ; 
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2.3 Inverse Fourier Transform: 
 
It is always possible to move back from the frequency-domain to 
time-domain, by either summing the terms of the Fourier Series or 
by Inverse Fourier Transform 
 

 
example  
Find the Inverse Fourier Transform of the following function  
 

 
Solution  
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Frequency response 

 
 
Magnitude and phase plots  
 

 
 
 
Example  
 
Find the inverse Fourier Transform of 
 
             X(w) =    1            -1    w      1 
                             0           otherwise 
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Solution  
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2.4 Power and Energy Spectral Density 
 
 

• The power spectral density (PSD) S
x
(w) for a signal is a 

measure of its power distribution as a function of frequency 
• It is a useful concept which allows us to determine the 

bandwidth required of a transmission system 
 

• Consider a signal x(t) with Fourier Transform (FT) X(w) 
 
 
 
 

• We wish to find the energy and power distribution of x(t) as 
a function of frequency 

 
Consider an energy signal g(t), Parseval’s Theorem states that 

 
 

 

 

 

 

 

 






 dtetxX tj )()(
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2.4.1 Energy Spectral Density 
 

• Parseval’s theorem can be interpreted to mean that the energy of a signal 

g(t) is the result of energies contributed by all spectral components of a 

signal g(t). 

• The contribution of a spectral component of frequency w is proportional to 

|G(w)|^2. 

• Therefore, we can interpret |G(w)|^2 as the energy per unit bandwidth of 

the spectral components of g(t) centered at frequency w. 

• In other words, |G(w)|^2 is the energy spectral density of g(t) 

 

Example  

 

 
If x(t) is the voltage across a R=1 resistor, the instantaneous power 
is, 
 
 
 
 
Thus the total energy in x(t) is, 
 
 
 
 
 

2
2

))((
))((

tx
R

tx







 dttx 2)(Energy
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From Parseval’s Theorem, 
 
 
 
 
 
 
 
 
 
 
 
 

2.4.2 Power Spectral Density 
 

 
We find the average power by averaging over time 
 
 
 
 
 

Where x
T
(t) is the same as x(t), but truncated to zero outside the time 

window -T/2  to T/2 
 

• Using Parseval as before we obtain, 
 






 dfX
2
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









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2











2

2

2))((
1lim

power Average

T

T

T dttx
TT
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Where S
x
(w) is the Power Spectral Density (PSD) 

 
 
 
Example  
Evaluate the power, the spectral density and autocorrelation function 
of the signal 

f (t) = Acos w0t where w0 = 2 /T. We have 
 
Solution  

 

The evaluation of the average power of a sinusoid is often needed. It 
is worth while remember in g that the average power of a sinusoid of 
amplitude A is simply A^2/2. 
We also note that the Fourier series coefficients of the expansion 
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