Asst. Lect. Haider Qais
Design of Steel Structure

4th year lectures (2023-2022)
Chapter 9: Bending and Axial Force

«» Members subjected to bending and axial tension:

A few types of members subjected to both bending and axial tension are
shown in the figure below. In section H1 of the AISC specification, the
interaction equations that follows are given for symmetric shapes subjected

to bending and axial tensile forces.
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or other moment from lateral forces

(a) A hanger subject to an off-center
tensile load
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(c) A beam subject to a uniform gravity
load and an axial tensile load
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In which:

P. = required axial tensile strength, P, kips
P. = design axial tensile strength (¢;B,) Kips
M,. = required flexural strength, M,, kft

M, = design flexural strength (¢, M,,) kft

s Example 1:

A 50 ksi W12 X 40 tension member with no holes is subjected to the axial loads
Pp =25k and P, = 30k, as well as the bending moments Mp, = 10 ft-k and
M, = 25 ft-k. Is the member satisfactory if L, < L,?

Using a W12 X 40 (A = 11.7 in?)

LRFD

P,o=P, = (12)(25k) + (16)(30k) = 78k
M,y = My, =(1.2)(10 fik) + (1.6)(25 fi-k)
= 52 fi-k

P.o= B, = $,F,A, = (09)(50ksi)(11.7 in’)

= 5265k
M., = dyM,, = 630 fi-k (AISC Table 3-4)

!4 Tk
F-_- = m = 148 < 0.2

. Must use AISC Eq. H1-1b

-Fr Hﬂ' M"-"
EE+[H,,+H = 1.0

L7

75 52
(2)5268) | (u "'E)
=089 < 1.0 OK
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s Example 2:

A W10 X 30 tensile member with no holes, consisting of 50 ksi steel and with
Ly, = 12.0 ft, is subjected to the axial service loads P, = 30k and P, = 50k and to
the service moments Mp, = 20 ft-k and M;, = 40 ft-k. If C, = 1.0, is the member
satisfactory?

Usinga W10 X 30 (A = 8.84in’, L, = 4.84ftand L, = 16.1 ft, $yM,,, = 137 ft-k, BF
for LRFD = 4.61 from AISC Table 3-2)

LEFI

P, = B, = (12)(30k) + (L6)(S0K) = 116k
M., = M, = (L2){20 ft-k) + {1.6)(40 fi-k)

= BRfi-k
Mr 12_:.'1
P. = 4P, = $.F A, = (0.9)(50 ksi) (B84 in%)
= 3978k

M, = duM,, = E-lﬂ"bupr = BF(Ly - Lr}]

= 1LO{137 — 461120 — 4.84)]
= 1040 ft-k

116
=378 029 =02

. Must use AISC Eq, Hl-1a

B gy My
E*i(E*Hq)’“”

116 Bf 8%
W89 m.q*“)

= LI > LONG.
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«» First and Second Order Moment for Members Subjected to Axial

Compression and Bending:

When a beam column is subjected to moment along its unsupported length,
it will be displaced laterally in the plane of bending. The result will be an
increase or secondary moment equal to the axial compression load times the
lateral displacement or eccentricity. In the figure below, we can see that the
member moment is increased by an amount (P 6), where Py is the axial
compression load determined by a first order analysis. This moment will
cause additional lateral deflection, which will in turn cause a larger column
moment, which will cause a larger lateral deflection, and so on until
equilibrium is reached. M; is the required moment strength of the member.
My is the first order moment, assuming no lateral translation of the frame.

|

1 ) m,

',] The moment will be

[ increased by the

e second-order moment P, &
1

\

\

M,=M, + P,é

nt nr
\
\ “wﬁf

T }'ﬂf

If a frame is subjected to sidesway when the ends of the column can move

laterally with respect to each other, additional secondary moments will

result. In the figure below, the secondary moment produced due to sidesway
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Is equal to Py A. The moment Mr is assumed by the AISC specification to

equal My (which is the moment due to the lateral loads) plus the moment due

t0 Pt A. "A’l P
m//jwlt

/  The moment will be
[ increased by the
| second-order moment P,,A

\j Mr:*MI{+Pn{A

A

Py

The required total flexural strength of a member must at least equal the sum
of the first order and second order moments. Several methods are available
for determining the required strength. The AISC specification chapter C
states that we can either make a second order analysis to determine the
maximum required strength or use a first order analysis or amplify the

moments obtained with some amplification factors called B, and B,.

«» Approximate second order analysis:

You can find this method in appendix 8 of the AISC specification. Using
this method we will make two first order analyses one an analysis where the
frame is assumed to be braced so that it cannot sway. We will call this
moment My and will multiply them by a magnification factor B, to account

for the P effect. When we will analyze the frame again, allowing it to sway.
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We will call these moments M;; and will multiply them by a magnification

factor B, to account for the PA effect.

The final moment in a member will equal,

M, = BiM,; + B,M;;  (AISC equation C2 — 1a)

The final axial strength P, must equal,

P. =P, + B,P; (AISC equation C2 — 1b)

++ Maagnification Factors:

The magnification factors are B; and B,. With B, the analyst attempts to
estimate the P.o effect for a column, whether the frame is braced or
unbraced against sidesway. With By, the analyst attempts to estimate the PiA

effect in unbraced frames.

The horizontal deflection of a multistory building due to wind or seismic
load is called drift (A). Drift is measured with drift index (An/L), where Ay IS
the first order lateral inter-story deflection and L is the story height. For the
comfort of the occupants of the building, the index is usually limited at
working loads to a value between 0.0015 and 0.0030, and at factored loads

to about 0.0040.
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The expression of B; was derived for a member braced against sidesway. It
will be used only to magnify the M,, moments (those moment computed

assuming that there is no lateral translation of the frame).

_m
P

1—a=-
Py

B; = > 1.0 (AISC Equation C2 — 2)

In this expression G, is a term that is defined in the next section, « is a
factor equal to 1 for the LRFD method; P. is the required axial strength of
the member, and P,, is the member Euler buckling strength calculated on

the basis of zero sidesway.

m2El

P, =
T (KyL)?

(AISC Equation C2 —5)

One is permitted to use the first order estimate of P, (that is, B. = P,,; + P;;)
when calculating magnification factor B;. Also, K; is the effective length
factor in the plane of bending, determined based on the assumption of no
lateral translation, and should be equal to 1.0 unless analysis justifies a

smaller value.

In a similar fashion P, is the elastic critical buckling resistance for the story
in question, determined by a sidesway buckling analysis. For this analysis,

KoL is the effective length in the plane of bending, based on the sidesway
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buckling analysis. For this case, the sidesway buckling resistance may be
calculated with the following expression, in which X is used to include the

entire column on that level or story.

ZP —z TEL IS¢ equation €2 — 6
2= L KL ( equation a)

Furthermore, the AISC permits the use of the following alternative

expression for calculating ), P,,

Y HL
P,, =R
z e2 m AH

Rm =1 for braced frame system and 0.85 for moment frame system.

(AISC equation C2 — 6b)

Y. H = story shear produced by the lateral loads used to compute Ay, Kips

L = story length, in

Ay = First order interstory drift due to the lateral loads

The value shown for ), P,,; and }; P,, are for all of the columns on the floor
in question. This is considered to be necessary because the B2 term is used
to magnify column moments for sidesway. For sidesway to occur in a
particular column, it is necessary for all the columns on the floor to sway

simultaneously. The ) H value used in the first of the B2 expression
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represents the sum of the lateral loads acting above the floor being

considered.

1

2 Pt
l1—as+—
ZPeZ

Bzz

¢ Moment modification or C, factors:

In the expression for B;, a term Cp, called the modification factor was
included. The magnification factor B; was developed for the largest possible
lateral displacement. On many occasions the displacement is not that large,
and B; over magnifies the column moment. As a result, the moment may

need to be reduced or modified with the C,, factor.

l P,
M
N

M \
\
\

\ -Max M, =M+ P,8

AL
M
{2,

(a) Column (b) Column moments

(s}
N
=)

~1
$

In the figure above, we have column bent in single curvature, with equal end
moments such that the column bends laterally by an amount 6 at mid depth.

The maximum total moment occurs in the column clearly will equal M plus
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the increased moment P6. As a result no modification is required and Cp, =
1.0. An entirely different situation is considered in the figure below, where
the end moments tend to bend the member in reveres curvature. The initial
maximum moment occurs at one of the ends, and we should not increase by
the value of P because we will be overdoing the moment magnification.

The purpose of the modification factor is to modify or reduce the magnified

moment. l P
M M
—
M{ 1y
\
| \
/ \
/
+ = Maximum moments
7
'./ e donotequal M + P8
| .
|
\ P05
—_ M
M M
Py
(a) Column (b) Column moments

Modification factor is based on the rotational restraint at the member ends
and on the moment gradients in the member. The AISC specification C1

includes two categories of Cp,.

In category 1, the members are prevented from joint translation or sidesway,
and they are not subject to transverse loading between their ends. For such a
member, the modification factor is based on an elastic first order analysis.

M
C,.=06— o.ztﬁ1 (AISC equation C2 — 4)
2
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1

In this expression Z— Is the ratio of the smaller moment to the largest
2

moment at the ends of the unbraced length in the plane of bending under
consideration. The ratio is negative if the moments cause the member to
bend in single curvature, and positive if they bend the member in reversed or

double curvature.

Category 2 applies to members that are subjected to transverse loadings
between the joints in the plane of loading. The AISC specification states that
the value of Cm for this situation may be determined by rotational analysis
or by setting it conservatively equal to 1.0. The value of Cm of category 2
may be determined for various end conditions and loads by the values given

in Table C-C2.1.
P, = Pr = is the required column axial load

Pe1 = is the elastic buckling load for a braced column.

m2El

P,y =—— (AISCE ] 2 —
et = K D)2 (AISC Equation C2 —5)

+» Beam column in braced frame:

The same equations are used for member subjected to axial compression and
bending as were used for member subjected to axial tension and bending. Pu

is referring to compression force rather than tension force.
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To analyze beam column or member subjected to both bending and axial
compression, we need to make both first and second order moment analysis
to obtain the bending moment. The first order moment is usually obtained by
making an elastic analysis and consists for the moment M, (due to lateral

loads — due to lateral translation)

Theoretically, if both the loads and frame are symmetrical M will be zero.

Similarly, if the frame is braced My, will be zero.

Case P Cp,
S fr 0 10
A A o
04 | 1-04%
_p [TTTTITTTIITTT - ' TPy
I 3
L

aP,
~0.4 1-045-

~

/ Pel
— . MY
7.
aP,
-0.2 1-02+—
S S — P
aP

12— —0.3 1035
e f——
7
aP,
/ —02 | 1-02%"
Pe]
s ez
Va

Source: Commentary on the Specification, Appendix 8-Table
C-A-8.1,p16.1-525. June 22, 2010. “Copyright © American
Institute of Steel Construction. Reprinted with permission. All
rights reserved.”
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(a) No sidesway and no transverse loading.
Moments bend member in single curvature.

C, = 0.6 — (0.4) (— %) =092

(b) No sidesway and no transverse loading.
Moments bend member in reverse curvature.

— 06— 60
C, =06 0-4(": 80) 0.30

(c) Member has restrained ends and transverse loading
and is bent about x axis.
C,, can be determined from Table 11.1
(AISC Table C-A-8.1) as follows:

aP, =280k
po— mEl _ @H)(29 X 10°)(272)
el T (KL)? (12 x 20y
= 1351k
C, =1-04 (+ %8—501-)= 0.92

(d) Member has unrestrained ends and transverse loading

and is bent about x axis.
C,, can be determined from Table 11.1
(AISC Table C-A-8.1).

aP, = 200k
2 3
p = I XINETS)
(12 % 20)
. 200 _
C, =1-02 (+ —-—236()) 0.98
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+» Example 3:

A 12-ft W12 X 96 (50 ksi steel) is used as a beam-column in a braced frame. It is bent
in single curvature with equal and opposite end moments and is not subjected to inter-
mediate transverse loads. Is the section satisfactory if P, = 175k, P; = 300k, and

first-order Mj, = 60 ft-k and M, , = 60 ft-k?
W12 X 96 (A = 28.2in%,

Solution. Using a

I, = 833in*,

épM,, = 551 ft-k,

L,=109ft, L, = 46.7 ft, BF = 5.78 k for LRFD).

LRFD

P, = (12)(175) + (1.6)(300) = 690 k

Myux = My = (12)(60) + (1.6)(60) = 168 ft-k

For a braced frame, let K = 1.0 \

S (KLY, = (KL), = (1.0)(12) = 12 ft

P. = ¢.P, = 1080 k (AISC Table 4-1)

P,= P, + B; P, =690 + 0 = 690k
P, 690

— = —— =(.639 > 0.2

P. 1080 2

.. Must use AISC Eq. Hl-1a

Gt A
m.r— - » MZ

168

=06~-04—— ) =10
CI"I ( 168) 1

LRFD
_ @EI,  (7%)(29,000)(833)
PTAKL)? (10 X 12 x 12)?
= 11,498 k
CI".! 1.0
B = =1,
3 | _ oP, (1.0)(690) Lo
Peyx 11,498

er = Bl.rMm.t

.. Zone2

dpM ;= 1.0[551

Pl 8 M’.K
— 4+ ===+

BTN M
_ 6% 8
1080 9

(1.064)(168) = 178.8 ft-k

Since L, = 12ft > L, = 1091t < L, = 46.6 ft

~ (5.78)(12 = 10.9)] = 544.6 ft-k

M,,
M.,

178.8
— =0931 < 1.0
(‘ 7 0) 1 <10 OK

". Section is satisfactory.
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We can use table 6-1 and the following simplified equations to solve

(example 3).
For pP. = 0.2, pPB. + byM,, + b,M,.,, < 1.0 (Equation 6 — 1)

1 9
Forph <02,  Sph+g (bM, + b,M,,) < 1.0 (Equation 6 — 2)

s Example 4:

Repeat Example 11-3, using the AISC simplified method of Part 6 of the Manual and
the values for K, L, P, and M,, determined in that earlier example.

LEFI}

o EI, s (w7 )(29,000)( 833)

P, :
BUKGL)E (10 % 12 % 12)7
= 11498 k
i L0
By, = —ar, " T G0@) 1064
PI'I:I' 11!4495

M., = B, M,, = (1.064)(168) = I?ﬂ.ﬂ fi-k
Since Ly = LEh‘.‘-'L,=1ﬂ.9h-ﬂL,=ﬂ5.ﬂﬂ
. Foned

dyM,, = LO[SS] — (STRY(12 — 10.9)] = 5446 fi-k

M
Fr O M Ty
P O\M., " M,

6 B/ 1TRE

=E+E(m+u)-m1{mﬂu

. Section is satisfactory.
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+» Example 5:

A 14-ft W14 X 120 (50 ksi steel) is used as a beam-column in a braced frame. It is bent
in single curvature with equal and opposite moments. Its ends are rotationally
restraingd, and it is not subjected to intermediate transverse loads. Is the section satis-
factory if Pp, =70k, and P, = 100k and if it has the first-order moments
Mp, = 60 ft-k, M, = 80 ft-k, Mp, = 40 ft-k, and M, , = 60 ft-k?

Solution. Usinga W14 X 120 (A = 35.3in% I, = 1380in*, 1, = 495in*, Z, = 212 in’,
Zy, = 102 in’, L, = 13.2 ft, L, = 51.9 ft, BF for LRFD = 7.65k ).

LRFD LRFD

Py = B, = (12)(70) + (1.6)(100) = 244k L g(b_xM“ + bM,,) = 10

M, = M, = (12)(60) + (1.6)(80) = 200 ft-k

1 wx = (1.2)(60) + (1.6)(80) = %(0._]30 X 10°%)(244)

M,y = My, = (12)(40) + (1.6)(60) = 144 ft-k

) ; g "

For a braced frame K = 1.0 + 5(1.13 X 1077)(203.6)

KL = (1.0)(14) = 141t - 2—(2.32 X 107%)(151.3)

P. = écP, = 1370 k (AISC Table 4-1) =0.743 = 1.0 OK

P,= P, + By P, =244 + 0 = 244k Section is satisfactory but perhaps overdesigned.
r nt 4 (5 o

P 244

—=—=).178 < 0.2

B 1370 % )

. Must use AISC Equation H1-1b

200
Ch: =06 — 0.4(—%) = 1.0
2)(29,000) (1380
iy = M = 13995k
(1.0 X 12 X 14)*
1.0
== =)
B amaa
13,995

M, = (1.018)(200) = 203.6 fi-k

T4
;=06 04— ) =10
Coy=06 04( 144) 1

2)(29.,000) (495
Py, = L )2000)4%) _ oz
Y (10:x 12 X 14)?
1.0
= —te 9165
By 1 (1.0)(244) Lt
5020

M,, = (1.051)(144) = 1513 ft-k

-

From AISC Table 6-1, for KL = 14 ftand L, = 14 ft
Y4
p =030 X 107, b, = 1.13 x 103&~"

b, =232 X 107 &r”
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,)A} « Example 6:

For the truss shown in Fig. 11.7(a),a W8 X 35 is used as a continuous top chord mem-
ber from joint L, to joint U;. If the member consists of 50 ksi steel, does it have suffi-
cient strength to resist the loads shown in parts (b) and (c) of the figure? The factored or
LRFD loads are shown in part (b), while the service or ASD loads are shown in part (c).
The 17.6 k and 12 k loads represent the reaction from a purlin. The compression flange
of the W8 is braced only at the ends about the x-x axis, L, = 13 ft, and at the ends and
the concentrated load about the y-y axis, L, = 6.5 ft and L, = 6.5 ft.

U,
0, ]
U1 15 ft
: [
759/'/ ;;!2;/
> 6at 12 ft = 72 ft >
(a)
17.6 k 12 k
U, 200 k 140 k
L 50 5%
0 5 ® 6 = ® S
200 k e 140 k \A/ it
(b) Factored loads (¢) Service loads
(LRFD) (ASD)

Using a W8 X 35 (A = 10.3in I, = 127in*, r, = 3.51in, r, = 2.03in, Lp = 7.17 ft,

Mp,
M p, = 130 ft-k, Q” = 86.6 ft-k, rx/r, = 1.73).
b
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LRFD

Plu = P" from ﬁgure =200k = Pr

Conservatively assume K, = K, = 1.0. In truth,

the K-factor is somewhere between K = 1.0 (pinned-

pinned end condition) and K = 0.8 (pinned-fixed
end condition) for segment L,U;

KL\ _ (1.0)(12 X 13) -
(T)‘ e 3.51 Sidaad
KL\ _ (1.0)(12 X 65)
(T) " 2.03 =Sl

From AISC Table 4-22, F, = 50 ksi

&.F., = 38.97 ksi

é.P, = (38.97)(10.3) = 4014k = P.

F, 200
—_—= e— = ), > 0.
P, 14 0.498 > 0.2

.. Must use AISC Eq. Hl-1a

Computing P,,, and C,,,
%)(29,000)(127
elx = ( )( )( ) = 1494 k
; (1.0 X 12 X 13)?
From Table 11.1
For
7, 7
clee 02(1.0 (200)) — 0973
mx = . 1494 s YA
For N
7
o ()3(1.0(200))_0%0
mx = i O 7 T T S

Avg C,,.. = 0.967

Computing M,
For 17.6 k

ﬁ/ %A

PL _ (17.6)(13)
4

Mup==—= 4 = 57.2 ft-k
For 17.6 k
N
7
_3prL_ (3)(17.6)(13)
My === = = = 429 ft-k
Avg M, = 50.05 ft-k = M,,
0.967
By=————"=1116
M (1)(200)
1494

M, = (1.116)(50.05) = 55.86 ft-k
Since L, = 65ft < L, = 7.17 ft

.. Zone @)
dsMyy = 130 ftk = M,

Using Equation H1-1a

P, M, M,
—+§(——i+—~l)sl.0

P, M, M,
200 8(55.86

— == +0) =1
401.4 9( 130 0) R

0.880 = 1.0 Section OK

| From AISC Table 6-1

(KL),=6.5 ft

(KL)ygpuiy = —— = —= = 1.51 ft

| P=250X107, for KL=7.51ft

b, =68 %1073, for L,=6.5 ft
pPAb M +bM, =10

© =(2.50%107%) (200) + (6.83 X 10™?) (55.86) +0

=0.882<1.0 Section OK
Section is Satisfactory.
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+» Design of Beam Column Braced or Unbraced:

The design of beam column involves a trial and error procedure. A trail
section is selected by a procedure and then checked with the appropriate
interaction equation. If the section does not satisfy the equation, or if it is too
much on the safe side (overdesigned), another section is selected and the

interaction equation is applied again.

A common method used for selecting sections to resist both moment and
axial loads is the equivalent axial load or effective axial load method. In this
method the axial load P, and the bending moments My, My are replaced
with a fictitious concentric load P, equivalent to approximately to the

actual axial load plus the moment effect.

Equations are used to convert the bending moment into an equivalent axial
load Py, which is added to the design axial load P,. The total of P, + Py is

equivalent or effective axial load Pey,, and it is used to enter the concentric

column tables of part 4 of the AISC manual. Then use table 4-1
Page 303
Page 721 P m mu
Assume Bl and B2 =1 “lE ) ™ *
take u =2 Given table

To apply this expression, a value of m is taken from the first approximation
section of table 11-3, and u is assumed equal to 2. In applying the equation,

the moments must be used in kft. The equation is solved for Peg,. After that a
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Page 721

Assume B1 and B2 =1

take u = 2

Haider Qais
Pencil

Haider Qais
Typewriter
Given table

Haider Qais
Typewriter
Then use table 4-1

Page 303

Haider Qais
Typewriter
`


Asst. Lect. Haider Qais

Design of Steel Structure

4th year lectures (2023-2022)
column is selected from the concentrically loaded column tables. Then the

equation of Py, is solved again with a revised value of m from the

subsequent approximation part of the table, and the value of u is kept equal

to 2.
TABLE 11.3 Preliminary Beam—Column Design Fy = 36 ksi, Fy = 50 ksi
Values of m
F, 36 ksi 50 ksi
kiol 10 | 12 | 14 | 16 | 18 | 20 P 0| 12| 14| 16| 18 | 20 |22
over over
1st Approximation
Shiges 20 1.9 1.8 1.7 1.6 1.5 1.3 1.9 1.8 17 1.6 1.4 1.3 1.2
Subsequent Approximation
w4 | 3.1 23 1.7 1.4 1.1 1.0 0.8 24 1.8 14 1.1 1.0 0.9 0.8
ws | 32 2.7 2.1 1.7 14 1.2 1.0 2.8 22 17 1.4 1.1 1.0 0.9
w6 | 2.8 2.5 2.1 1.8 1.5 1.3 1.1 25 22 1.8 1.5 13 1.2 1.1
W8 | 25 23 22 2.0 1.8 1.6 1.4 24 22 2.0 1.7 1.5 1.3 1.2
w10 | 2.1 2.0 1.9 1.8 1.7 1.6 1.4 2.0 1.9 1.8 1.7 1.5 14 1.3
wiz2 | 1.7 1.7 1.6 1.5 1.5 14 13 1.7 1.6 1.5 1.5 1.4 13 1.2
w14 | 1.5 1.5 1.4 1.4 13 1.3 1.2 1.5 14 14 1.3 1.3 1.2 1.2
Source: This table is from a paper in AISC Engineering Journal by Uang, Wattar, and Leet (1990).
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s Example 7:

Select a trial Wls%ction for both LRFD and ASD for the following data: F, = 50 ksi,
(KL),=(KL),=12ft, P,,= 690 k and M,,,, = 168 ft-k for LRFD, and P,, =475 k

LRFD
Assume B; and B, = 1.0

.. P,=P,=P,+BAP)
P,=690+0=690k
and, M, = M, = B;(M,;) + Bo(My,)
M, = 1.0(168) + 0 =168 ft-k

Pyeg=Py+ My m+M,, mu

From *“1*" Approximation” part of Table 11.3
m = 1.8 for KL =12 ft, F, = 50 ksi

u=2.0 (assumed)

Peq =690+ 168(1.8) +0=992.4 k

1*" trial section: W12 X 96 (®.P, = 1080 k)
from AISC Table 4-1

From “Subsequent Approximation™ part of
Table 11.3,W12’s

m=1.6
Preg =690+ 168(1.6) + 0 =958.8 k
Try W12 X 87, (PP, =981 k >958.8 k)

Note: These are trial sizes. By and B,, which were assumed, must be calculated and these W12 sections
checked with the appropriate interaction equations.
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s Example 8:

Select a trial W section for both LRFD and ASD for an unbraced frame and the
following data: F, = 50 ksi, (KL), = (KL), = 10 ft.

For LRFD: P, = 175 k and P, = 115 k, M,,,, = 102 ft-k and M, = 68 ft-k, M, =
84 ft-k and M, = 56 ft-k

For ASD: P,,=117 k and P, =78 k, M,,,, =72 ft-k and M, = 48 ft-k, M,,,, = 60 ft-k
and My, =40 ft-k

Solution

LRFD
Assume By, By, B;, and B, = 1.0

S. P,=P,=P,;+By(Py)
P,=175+1.0(115) =290 k
and, M,, = M, = B (M) + B2,(M,,,)
M, = 1.0(102) + 1.0(68) = 170 ft-k
and, M,, =M, = B,(M,,,) + B2 (M)
M, =1.0(84) + 1.0(56) = 140 ft-k
Pieg= Py+ Myan + M, mu
From “1* Approximation” part of Table 11.3
m =19 for KL =10 ft, F, = 50 ksi
1 =2.0 (assumed)
Prueqg =290+ 170(1.9) + 140(1.9)(2.0) = 1145 k
1™ trial section from Table 4.1:
Wi4 - W14 X 99 (d.P,=1210k)
WI2 - WI2 X 106 (®.P,=1260k)
W10 — W10 X 112 (®.P, = 1280 k)

Suppose we decide to use a W14 section:

From “Subsequent Approximation™ part of
Table 11.3, W14’s

m=1.5
Peq =290 + 170(1.5) + 140(1.5)(2.0) = 965 k
Try W14 X 90, (O.P, = 1100 k > 965 k)

Note: These are trial sizes. By, B,,, B, and Bzy, which were assumed, must be calculated and these W14
sections checked with the appropriate interaction equations.
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+» Example 9:

Select the lightest W12 section for both LRFD and ASD for the following data: F,, = 50
ksi, (KL),=(KL), =12 ft, P,, =250 k, M,,,, = 180 ft-k and M,,,, = 70 ft-k for LRFD, and
Py =175 k, My, = 125 ft-k and M,,,, = 45 ft-k for ASD. C, = 1.0, C,,, = C,,, = 0.85.

LRFD

LRFD

Assume By, = By, = 1.0, B; not required
S P,=P,=P,+ By(Py)
P,=250+0=250k
and, M, =M, = B{(M,,,) + B(My,)
M, =1.0(180) + 0= 180 ft-k
and, M,, = M,, = B{(M,,) + By(M,,)
M, = 1.0(70) + 0 =70 ft-k
Pyeg= Py + Mym+ M, mu
From “Subsequent Approximation” part of
Table 11.3, W12’s
m=1.6
u=2.0 (assumed)
Peq =250+ 180(1.6) + 70(1.6)(2.0) = 762 k
Try W12 X 72, (®.P, =806 k > 762 k) from Table 4.1
From Table 6.1 for KL =12 ftand L, =12 ft
p=124 X107,b,=223 X 107,b,=4.82 X 107

P/®.P, = 250/806=0.310>0.2
Use modified Equation H1-1a.

1.24 x 107 (250) +2.23 X 107 (180) +4.82 x 107°
(70)=1.049>10 N.G.

Try W12 X 79, (® P, = 887 k > 762 k) from Table 4.1
From Table 6.1 for KL =12 ftand L, =12 ft

p=113 X 107,b,=2.02 X 10°%,b,=4.37 x 107

1.13 X 107 (250) +2.02 % 107 (180) +4.37
X 1073(70)=0952<1.0 OK

(:hcck Bh‘ _- Bl\' = lO
= EI' 7(29,000)(662)

elx = S ot = 9138 k
(KLY (10 X 12 X 12)
Cnn s 0.85 = i
B | _aP, ey~ h
P 9138
B, =10, OK
2 EI 72(29.000)(216
e B ( A ), = 2981k
(KLY (10X 12 X 12)
Cony 0.85
= = 2 = 093<1;
By, [ _aP, 10(50) 9=l
Py, 2081
Bl‘,':l.(). OK

With By, = B, = 1.0, section is sufficient based on
previous check using modified Equation H1-1a.

Will perform additional check using Equation H1-1a:
For W12 X 79,® M, =446 ft-k, L, = 10.8 ft, L, =39.9 ft
BF=5.67,L,=121t,Zone 2, C, = 1.0,® M,,, =204 ft-k
OM,.= Cy, [® M, - BF(L, - L,)| ® M,

DOM,,, = 1.0 [446 — 5.67(12 - 10.8)] =439.2 ft-k

oM, - M, =204 ft-k

Equation H1-1a:

250 8/ 180 70
e i S PR o W
887 9(439.2 i 204) Bl S A0NOK

Use W12 X 79, LRFD.
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Chapter 7: Analysis and design of Beams for Moments

+¢ Introduction to flexural memebr (beams):

Types of Beams:

Beams are usually said to be members that support transverse loads.
They are probably thought of as used in horizontal positions and
subjected to gravity or vertical loads. Among the many types of beams
are joists, lintels, spandrels, and floor beams.

Joists are the closely spaced beams supporting the floors and roofs of
buildings.

Lintels are the beams over openings in masonry walls, such as
windows and doors.

Spandrel beams support the exterior walls of buildings and perhaps
part of the floor and hallway loads.

Stringers are the beams in bridge floors running parallel to the
roadway

Floor beams are the larger beams in many bridge floors, which are
perpendicular to the roadway of the bridge.

Section Used as Beams:

The W shapes will normally prove to be the most economical beam

sections, and they have largely replaced channels and S sections for
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beam usage. Channels are sometimes used for beams subjected to

light loads and in places where clearances available required narrow
flanges. They have very little resistance to lateral forces and need to
be braced. The W shapes have more steel concentrated in their flanges
than do S beams and thus have larger moment of inertia and resisting
moment for the same weights. Another common type of beam section
Is the bar joist. This type of section, which is used to support floor and
roof slabs, is actually a light shop-fabricated parallel chord truss. It is
particularly economical for long spans and light loads.

Bending Stresses:

For an introduction to bending stresses, the rectangular beam and
stress diagram in the figure below are considered. If the beam is
subjected to some bending moment, the stress at any point may be

computed with the usual flexural formula:

_Mc
fb—I

i E F. F F

/Y

T F, F F F
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This expression is applicable only when the maximum computed
stress in the beam is below the elastic limit. The value (l/c) is a
constant for a particular section and is known as the section modulus

(S). The flexural formula may then be written as follows:

_MC_M

fo=7T=3
Initially when the moment is applied to the beam, the stress will very
linearly from the neutral axis to the extreme fibers. If the moment is
increased, there will continue to be a linear variation of stress until the
yield stress is reached in the outmost fibers. The yield moment of a
cross section is defined as the moment that will produce the yield
stress in the outmost fiber of the section.
If the moment in a ductile steel beam is increased beyond the yield
moment, the outmost fibers that had previously been stressed to their
yield stress will continue to have the same stress, but will yield, and
the duty of providing the necessary additional resisting moment will
fall on the fibers nearer to the neutral axis. This process will continue,
with more and more parts of the beam cross section stressed to the
yield stress, until finally a full plastic distribution is approached.
When the stress distribution has reached this stage, a plastic hinge is

said to have formed, because no additional moment can be resisted at
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the section. Any additional moment applied at the section will cause
the beam to rotate.

The plastic moment is the moment that will produce full plasticity in a
member cross section and create a plastic hinge. The ratio of the
plastic moment M, to the yield moment My is called the shape factor.
The shape factor equals to 1.5 for rectangular sections and varies from
about 1.10 to 1.20 for standard rolled-beam sections.

Elastic Design:

Until recent years, almost all steel beams were designed on the basis
of elastic theory. The maximum load that a structure could support
was assumed to equal the load that first causes a stress somewhere in
the structure equal to the yield stress of the material. The members
were designed so that computed bending stresses for service loads did
not exceed the yield stress divided by a safety factor. Engineering
structures have been designed for many decades by this method, with
satisfactory results. The design profession, however, has long been
aware that ductile material members do not fail until a great deal of
yielding occurs after the yield stress is first reached. This mean
members have greater margins of safety against collapse than the

elastic theory would seem to indicate.
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v. The Plastic Modulus:

The yield moment My equals the yield stress times the elastic
modulus. The elastic modulus I/c or bd?/6 for a rectangular section,
and the yield moment equals F, bd?/6. This value can be obtained by

considering the resisting internal couple shown in the figure below:

Fy
} 1 d F bd
= — —_— — Y
T d C=3F5b Z
2
RO i S — * —f-24.- x
: i
2 _ _1.d _Fybd
L v/ > 1 2 bob= 4

The resisting moment equals T or C times the lever arm between

them:

_Fbd d _Fbd?
YT T4 T2 6

The elastic modulus can again be seen to equal bd?/6 for a rectangular
beam. The resisting moment at full plastic can be determined in a
similar manner. The result is called plastic moment M. it is also the
nominal moment of the section M. this plastic or nominal moment

equals T or C times the lever arm between them.
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F)’
: ;
% -<-——$—C=Fy§b
T 2 ord
'
F
r—— ) ———» Y

The plastic moment is said to equal the yield stress times the plastic
section modulus. From the forgoing expression for a rectangular
section, the plastic section modulus Z can be seen to equal bd?/4. The
shape factor, which equal My/My, = F/Z/F,S, or Z/S = 1.5 for
rectangular section.

Note: the total internal compression must equal the total internal
tension. In the plastic condition, the areas above and below the plastic

neutral axis must be equal.
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s Example 1:
Determine My, M, and Z for the steel tee beam shown in the figure below.
Also, calculate the shape factor and the nominal load w, that can be place on

the beam for a 12 ft simple span, Fy = 50 ksi.

< 8in >
; » ‘T*}?in wy, kit
) _{‘:.\_") " [ 27777141 11114144777%
6in - 12ft .
FIGURE 8.5 2in
Solution. Eﬁlgtic calculations:
NS
i N o .
AU 4= 8in)(15in) + (6in)(2in) = 24in
-—-——""_
% \ _ (12in)(0.75in) + (12in)(4.5 in) _
i = - = 2.625 in from top of flange
-¥|; 24 in? -
1 1
I=5 (8in)(1.5in)* + (8 in)(1.5in)(1.875 in)* + ' (2in)(6 in)?
+ (2in)(6 in)(1.875 in)?
= 122.6 in*
I 1226in* ,
\,rt‘ /¢ as75in “ES_;}“Q
N y _—FS _ (50ksi)(25.1in°) 1046 Tk
ﬁv} YT T T R —
@ Plastic calculations (plastic neutral axis is at base of flange):
@= (12%1)(0.75 in) + (12in?)(31in) = 45in’
M F%‘ (50 ki) (45 in’) 187.5 ft-k
K(\ _nor 2= e T
M, Z  45in’
Shape factor = —- == =1.79
W T M, T S T 251
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M = w, L.?
"8
(8)(187.5 ft-k)
w, = — = 10.4 k/ft
(12 ft)

The value of the plastic section moduli for the standard steel beam sections

are tabulated in table 3-2 of the AISC manual, W shape Selection by Z.

++ Design of beam for moment:

If gravity load is applied to along simple supported beam the beam will bend
downward, and its upper part will be placed in compression and will act as a
compression member. The cross section of this column will consist of the
portion of the beam cross section above the neutral axis. For the usual beam,
the column will have a much smaller moment of inertia about its y or
vertical axis than about its x axis. If nothing is done to brace it perpendicular
to the y axis, it will buckle laterally at a much smaller load that would

otherwise have been required to produce a vertical failure.

Lateral buckling will not occur if the compression flange of the member is
braced laterally or if twisting of the beam is prevented at frequent intervals.
The buckling moment of a series of compact ductile steel beam with
different lateral bracing will be discussed in this chapter. We will look at

beams as follows:
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1. First the beams will be assumed to have continuous lateral bracing for
their compression flange.
2. Next the beams will be assumed to be braced at short intervals.

3. Then the beams will be assumed to be braced laterally at large

intervals.

A typical curve showing the buckling moments of one these beams with

varying unbraced lengths is presented.

Inelastic Elastic

Plastic lateral- lateral-
behavior-full torsional é’orsional
plastic moment  buckling buckling
ﬁ(Zone 1) D (Zone 2) e (Zone 3)

NN | ) | ~

0.7 F,S, = Mg
(see Section 9.5)

—
1]
DN
e,
— M, (nominal resisting
moment of beam)

&

1 ol N
b \) N )

—» [, (laterally unbraced length
of compression flange)
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++ Plastic Behavior (Zone 1)

If we were to take a compact beam whose compression flange is
continuously braced laterally, we would find that we could load it
until its full plastic moment M, is reached at some point or points.

If we take one of these compact beams and provide closely spaced
lateral spacing for its compression flange, we will find that we can
still load it until the plastic moment is achieved if the spacing between
the bracing does not exceed a certain value, called L. Most beam fall

in Zone 1.

Inelastic buckling (Zone 2)

If we now increase the spacing between the lateral bracing, the section
may be loaded until some, but not all, of the compression fibers are
stressed to Fy. That means, in this zone we can bend the member until
the yield strain is reached in some, but not all, of its compression
elements before buckling occurs. This is referring to as inelastic
buckling.

As we increase the unbraced length, we will find that the moment the
section resist will decrease, until finally it will buckle before the yield

stress is reached anywhere in the cross section. The maximum
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unbraced length (L) at which we can still reach Fy at one point is the

end of the inelastic range.

++ Elastic buckling (Zone 3)

- If the unbraced length is greater than L., the section will buckle
elastically before the vyield stress is reached anywhere. As the
unbraced length is further increased, the buckling moment becomes

smaller and smaller.

+* Yielding behavior — full plastic moment, Zone 1

If the unbraced length L, of a compression flange of compact | or C shaped
section does not exceed L, (if elastic analysis being used) or Lyq (if plastic
analysis being used), then the member’s bending strength about its major

axis may be determined as follows:
M, =M, = E,Z (LRFD Equation F2 — 1)
opM, = oM, = @pF,Z (¢p = 0.9)

When an elastic analysis approach is used to establish member force, L, may

not exceed the value L, to follow if M, is equal FyZ.

E
L,=176r, j;y (AISC Equation F2 — 5)
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When a plastic analysis is used to establish member forces, L, (which is
defined as the lateral unbraced length of the compression flange at plastic
hinge locations associated with failure mechanisms) may not exceed the

value Lyq to follow if M, is to equal F,Z.

mivi( [E
Lyq = [0.12 +0.076 (W)] \/;y r, (AISC Appendix Equation A_1.5)

In this expression, M1 is the smaller moment at the end of the unbraced
length of the beam and M2 is the larger moment at the end of the unbraced
length, and the ratio M1/M2 is positive when the moments cause the
member to be bent in double curvature and negative if they bend it in single

curvature.

+» Design of beams, Zone 1

Included in the items those needs to be considered in beam design are
moments, shears, deflections, lateral bracing for the compression flanges,
and others. Beam will probably be selected that provide sufficient design
moment capacity @»M, and then checked to see if any of the other items are
critical. The factored moment will be computed, and a section having that

much design moment capacity will be initially selected from the AISC
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manual, part 3 table 3-2. From this table, steel shapes having sufficient

plastic moduli to resist certain moments can quickly be selected.

0/020 Example 2:
\.\3 2

If the compact and laterally braced section shown in the figure below

sufficiently strong to support the given loads if Fy = 50 ksi? Check the beam

with the LRFD method. | /ft*;;Z%

w}\, €l -

:‘\‘ D =1 k/ft (not including beam weight)
\‘LVJQ L =3 kit w21 (a4
\))\N: VA )
7 7777, 1+0.044
i 21 ft >
v’
Wi\
Mu =T = D.L=1—
8v ik
L.L=3 K
. — ft

L=0 " Leyy

W,=12D.L+16LL= 1.2A@§+1.6*3 =6 k/ft

W, *L* 6x212
My=—g—=—3

= 330.75 kft labuwal) o 5al)

My < M0 = 95,2 =0.9*50%95.4=4239k-in
Table 3-2=358 k-ft
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M, 330.75% 12 88.2 in?
= =88.2in

7. = =
T @yF, 0.9 * 50

From table 3-2: Try W 21*44 (Z«= 95.4 in® > 88.2 in®)

W,=12D.L+1.6LL=12x(1+0.044) + 1.6 * 3 = 6.0528 k/ft

W, *L?> 6.0528 * 212
M, =2 - =3§.6606kft<39%

8 8
</ U 3W ; in3
—'B/ZW/;,;?’%%/O.% 50 MMA m
s~ Use W 21 x 44

+» Example 3:

Select a beam section by using the LRFD method for the span and loading in

\y:o
the figure below, assuming full Iatereh support is provided for the

(]

o K

compression flange by the floor slab above and Fy = 50 ksi. 0 ,,X\«
L -~ l’(h"“‘)‘ “
P sURp + 1P
P; =30k /
L e H.nzf]-: k/ft
[ 8
L

#LL/MMA{MMMZ?? | : tt‘#apfa-

1]
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D.L=15 «
. I ft

k
W,=12D.L=12%15=18—

- /,(f(f*\.(af(

P,=16xL.L=16%30=48k

ek
y _Wu*L2+Pu*L_1.8*302+48*30_5625k .
v 4 8 4 é
My < @pMy = @, F,Z {"
k' 1‘ / /
, M, _5625N9_
T R, 09%50 |y
/i
Tuw
From table 3-2: Try W ’@@(zx - 153in* > 150 in?)
S.w. "
W, =12D.L =12+ (15 +]0,062) = 1.8744 I

W, 1> P,xL 18744%302 48 +x30 ”
M, = - | ‘ .
=t —t— (520.87 k/} <q\of"\ X

* 7
z,(q/{pl%/: %3&3%&«1’5 3’ - Pse YL 24 62 vk
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+» Example 4:

The 5 in reinforced concrete slab shown in the figure below is to be
supported with steel W sections 8 ft on centers. The beam which will span
20 ft, are assumed t\g be simple supported. If the concrete slab is designed to
support a live Ioad ‘?\'100 psf/ determine the lightest steel sections required

to support the slab by the LRFD procedure. It is assumed that the
Ly,

compression flange of the beam will be fully supported laterally by t

%
concrete slab. The concrete weights 150 Ib/ft. Fy = 50 ksi.

A RS 27/ A I
e RAAA A0 “JX 4° d »w'-
: . 5%
8 ft > il 4 e o 8 ft >l R \—/

./-t :IQI/

\.‘K/H W"\GE\'\.

Slab wt = *13%)*8—5 0— =
) f
A Ib
L.L =8%100=800—

— ft

Lb=0

18801b
W,=12D.L+1.6L.L=1.2%500+ 1.6 *800 = — =\T:.88 k/ft!
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_ W, xI* 1.88x20?

= 94 kft

M <(pr =(prZ

94
M, szs 0667 in3

opF, 09x50 >

- Zreq

—= From table 3-2{ Try W 10*22YZ, = 26 in® > 25.0667 in®)
S| R

{\ Ib
W,=12D.L+16L.L=12%(500+22)+ 1.6+800 = 1906.4f—t

1 119
1.9064 k/ft ( \’\H

W, *L*  1.9064 * 202
8 8

%/k /9%%2/1{8'7”1 6 in3
~ Use W 10 * 22 /

sl A <9

M, =

7z
7))’ +» Holes in beams:

It is often necessary to have holes in steel beams. They are required for the

installation of bolts and sometimes for pipes, ducts, etc. If at all possible,
these types of holes should be completely avoided. When necessary, they
should be placed through the web if the shear is small and through the flange

If the moment is small and the shear is large.


Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil

Haider Qais
Pencil


Asst. Lect. Haider Qais

O3

Design of Steel Structure
4th year lectures (2022-2023)

If we have bolts holes in the compression flange only and they are filled

with bolts, we do not need to consider any corrections.

The flexural strength of beams with holes in their tension flanges are
predicted by comparing the value (FyAs) with (FuAm). In these expressions,
Ay IS the gross area of the tension flange while A, is the net tension flange
area after the holes are subtracted. In the expressions given herein for
computing M,, there is term Y; which is called the hole reduction
coefficient. It is value is taken as 1.0 if Fy/F, < 0.8. For cases when the ratio

of Fy/Fyis > 0.8, Y. is taken as 1.1.

a. If FuAm > Y FyAs, the limit state of tension rupture does not apply
and there is no reduction in M, because of the holes.

b. If FuAm < YiFyAgg, the nominal flexural strength of the member at the
holes is to be determined by the flowing expression, in which S is the
section modulus of the member:

FuAfn
fg

M, =

xS, (AISC Equation F13 — 1)

s Example 5:

Determine @,M, for the W24x176 (Fy = 50 ksi, F, = 65 ksi) beam, shown in

the figure below, for the following situations:
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a. Using the AISC Specification and assume two lines of 1-in bolts in
standard holes in each flange.
b. Using the AISC Specification and assume four lines of 1-in bolts in

standard holes in each flange.

1.34in:1:| 7/ 7. I

- - - -—1- - - - - 2521n
W24 X 176

C 1 I !
fe—— 129in ——

Using W24x176 (bf = 12.9in, ty= 1.34 in, Sy = in®)

a Arg = bsty = 129 1.34 = 17.286 in?

1 1
= — —_— —_— = in 2
Afn = 17.286 — 2 * (1 16 + 16) x1.34 = 14.271in

E Az = 65+ 14.271 = 927.615 k

Fy—50—077<08'Y—10
F, 65 L
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Y,F,Arg =1%50*17.286 = 864.3 k

E,Afy =927.615 k > Y F,Ar; = 8643k
~ Tensile rupture does not apply and @, My,

= 1920 kft ( from AISC Table 3 — 2)

1 1 .
b. Apy =17.286 — 4+ (1 + =) * 1.34 = 11.256 in?

Fy—50—077<08'Y—10
F, 65 corie T

F,Ap, = 6511256 = 731.64 k
Y,F,A;y, =1%50%17.286 = 864.3 k

FApm = 927.615k < Y,F,A;, = 8643k

=~ Tensile rupture expression does apply

_ Fulpn o _ 65+11.256 x 450

= — 19046.51163 k i
T TA, R 17.286 o

_ 19046.51163 k in
B 12

= 1587.2093 k ft

@M, = 0.9 x 1587.2093 = 1428.4884 k ft
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\3\ < Bending coefficients:

o

In the formulas for inelastic and elastic

buckling, we will use a term C,,

called the lateral-torsional buckling modification factor for nonuniform

moment diagrams, when both ends of the unsupported segment are braced.

As we can see that the moment in the unbraced beam of part (a) of the figure

below causes a worse compression flange situation than does the moment in

the unbraced beam of part (b). For one reason, the upper flange of the beam

in part (a) is in compression for its entire length, while in (b) the length of

the upper flange that is in compression is much less.

w, kit 7 w, K/t 7
AASARSSSNNENNENENNNRNNENNNNNY /}\\\\\\ NSO NN ;
77497/ ﬁ}z 7/ g

l< L | |l< L o

[ I |

w, L?
3 w, L?
24

2 2

Length of upper w, L LLength of upperAl w, L

flange “column” 12 flange “column” 12

(a) Single curvature

(b) Reverse curvature

For the simply supported beam of part (a) of the figure, Cp, = 1.14, while for

the beam of part (b), C, = 2.38. The basic moment capacity equations for

Zone 2 and 3 were developed for laterally unbraced beam subject to single
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curvature, with C, = 1.0. Frequently, beams are not bent in single curvature,
with the result that they can resist more moment. To handle this situation,
the AISC Specification provides moment or C, coefficient larger than 1.0
that are to be multiplied by the computed M, values. The value of M,
Multiplied by C, may not be larger than the plastic M,, of Zone 1, which is

equal to FyZ

N Theoretical value
N </

CyM, may notbe > M, = F,Z
Cp, > 1.0
Can

0.7 F,§, —>

— M,

L, L,
F—Zone 1-4<—Zone 2—>}<—Zone 3——>|

—_— L,

The value of C,, for singly symmetric members in single curvature and
all doubly symmetric members is determined from the expression to
follow in which Mpmay is the largest moment in an unbraced segment of
a beam, while Ma, Mg, and Mc are, respectively, the moments at the

Y4 point, %2 point, and %, point in the segment.
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12:5Mmax AISC Equation F1 — 1
250, + 3M, + 4M, + 3N, © quation )

Cb=

Cp is equal 1.0 for cantilevers or overhangs where the free end is

unbraced. Check table 3-1 for C, values.

PH
w, kift w, k/ft 'l'
77727/ M7 72 N 3,
7 7 7 7 {2 | L2 |
| L2 | L2 | I & !
I | \
C, =114 C, =130 Cp=132
Pu Pu Pl( PH
l w, k/ft 1 {
7 77 v 4
|4 L2 l L2 ,I 7 7 | LB | L3 | LB |
I | | |
Cp =167 L2 L2 Midsection Cp, = 1.0
. End sections C, = 1.67
C,, varies
Pu PH Pu M] Ml
i ﬁ/ ﬂ l ﬁ/ 7
L/4 | Li4 | Li4| L4 A
C, = 1.11 for two center C, =10 C, =227
sections and 1.67 for
end ones
PH
vy
y w, k/ft ’ w, kit v l
hrzrtiisirzrtl] Yprezsotszrredf b v
Z 4
e | e |
L2 { L2 [ |
! ’ C, =192
C,=1238 C,=238

RN\
[ ee—_T
NN\

L2 L2 }!

Cp=227

FIGURE 9.10

Sample C,, values for doubly symmetric members. (The X marks represent points of lateral
bracing of the compression flange.)
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‘D} Example 6:

Determine C, for the beam shown in the figure part (a) and (b). Assume the

beam is a doubly symmetric member.

a w, 1?
3u,, L7 8 3w, L2
32 /é\ 33
L2
usg: M= _ 1
8
>|<, >|<<_ Pt of lateral 3w, L2 _ 3
LA | L4 | L4 | L4 bracing 32 32
Y 3 O
= = E% = f
o - 12.5M 01
b 25M .. + 3M, + AMy + 3M,
12.5 (1)
Cp = 8 =1.14
Coas(Hes(2)es(B)es(3)
“A\8 32 8 32
b. w, LZ
u/“ L2 24 w Lz 2
96 K —G w,L 1
96 ke L
33— 4 USE: - = =
5 w,L? 1
w,L* [ LA Li4 L/4 Lia 1 wL =—
g L e . 9% 96
12 B 12 ptoflateral 12
< = S ) bracing Wule _ i
Pos = s 24 24
=
1
125( —
(12)
Cp = = 2.38
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+» Moment Capacity Zone 2:

When constant moment occurs along the unbraced length, or as the unbraced
length of the compression flange of a beam or the distance between points of
torsional bracing is increased beyond L,, the moment capacity of the section
will become smaller and smaller. Finally, at an unbraced length L,, the
section will buckle elastically as soon as the yield stress is reached. The
nominal moment strength for unbraced length between L, and L, is

calculated with the equation to follow:

L,—L
M, = C, |M, — (M, — 0.7F,S,.) <L — L”)]
r p

< M, (AISC Equation F2 — 2)

L, is a function of several of the section’s properties, such as its cross
sectional area, yield stress, and torsional properties. The formula needed for
the calculation of L, is given in the AISC Specification (F1) and its values

are given in table 3-2.

For the cases when the unbraced length falls between L, and L,, the nominal
moment strength will fall approximately on a straight line between My« =
FyZx at L, and 0.7F Sy at L,. For intermediate values of the unbraced length

between L, and L,, we may interpolate between the end values that fall on a
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straight line. Should C;, be larger than 1.0, the nominal moment strength will

be larger, but not larger that M, = F,Z,

@My = Col@pMpy — BF(Ly — Lp)| < @p My,

s Example 7:

Determine the LRFD design moment capacity of a W24x62 with Fy = 50 ksi,
V" ad

él—b = é ft} and Cp,=1.0.

Using a W24x62 (from AISC table;;g: B,Mpx = 574 kft, @M = 344 kft,
-~

L, =4.87 ft, L, = 14.4{BF for LRFD =24.1 k)
L, <L,R L, \>2
487 < 8% 14.4 - fallsin Zone 2
PoMux = Cp[@oMpx — BF (Ly = Lp)] < 0 My

oM, = 1.0[574 — 24.1(8 — 4.87)] < 574

499 kft < 574 kft

X (prnx = 499 kft
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+ Elastic Buckling Zone 3:

When the unbraced length of a beam is greater than L,, the beam will fall in
Zone 3. Such a member may fall due to the buckling of the compression
portion of the cross section laterally about the weaker axis, with twist of the
entire section about the beam longitudinal axis between the points of lateral
bracing. The beam will bend initially about the stronger axis until a certain
critical moment M, is reach. At that time, it will buckle laterally about its
weaker axis. As it bend laterally, the tension in the other flange try to keep
the beam straight. As a result, the buckling of a beam will be a combination

of lateral bending and twisting of the beam cross section.

Rotation or twisting of
Cross section

— — ——

— — — —— —

If the unbraced length of a compression flange of a beam section or the
distance between points that prevent twisting of the entire cross section is
greater than L, the section will buckle elastically before the yield stress is

reached anywhere in the section. if the section F2-2 of the AISC
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Specification, the buckling stress for doubly symmetric | shape members is

calculated with the following expression:

M, = F, S, < M, (AISC Equation F2 — 3)

2

Cle'ZE ]C Lb .
E., = 1+ 0.078 (—) (AISC Equation F2 — 4)
Sy hy \r

ts

In this calculation,

r;s = effective radius of gyration, in (provided is AISC table 1-1)
J = torsional constant, in* (AISC Table 1-1)

¢ = 1.0 for doubly symmetric | shape.

h, = distance between flange centroid, in (AISC Table 1-1)

+»» Example 8:

Using AISC Equation F2-4 determine the value of ¢,M,,, for a

with Fy = 50ksi and an unbraced length Ly = 38 ft. assume that Cy, = 1.0.

Using W18x97 (L, = 30.4 ft, rs = 3.08 in, j = 5.86 in* ¢ = 1.0 for doubly

symmetric | section, Sy =188 in3, h, = 17.7 in, Zx = 211 ind)

note: L, = 38 ft > L, = 30.4 ft(fromtable3 —2)—m 2 3
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sectionis in Zone 3

Cbnz@ Lb 2
E, = 1+0078Sh<r—)
ts

X "o
——— S

V)
2 / 2
1.0 * 2 + 29000 5.86 % 1.0 /12 * 38
for == 3802 \/1+0'078188*17.7( 3.08
C:_)_3.08 )

My = Fop Sy <M, = F, Z,

26.2 x 188 50 %211
Mnx=T=410kftSMp = =

PpM,, = 0.9 x 410 = 369 kft

\9.3\ ¢ Design charts:

) = 26.2 ksi

The values of ¢,M, for sections normally used as beams have been

computed by the AISC, plotted for a wide range of unbraced lengths, and

shown as table 3-10 in the AISC manual. The values provided cover

unbraced lengths in the plastic range, in the inelastic range, and on into the

elastic buckling range (Zone 1-3). They are plotted for Fy, = 50 ksi and C, =

1.0. If the value of C, is greater than 1.0, the value given will be magnified.
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+» Example 9:

Using SJﬁéi steel, select the lightest available section for the beam shown in
the figure below, which has lateral bracing provided for its compression

flange, only at its ends. Assume that Cb = 1.0. Use the LRFD method.

D = 1 k/ft (notinckmiigg beam weight) '
\ L = 2 k/ft Lyn=2o
;g]??f[[?’]]MZZZZZZMZZZZj
VAL 7777
” |

W,=12D.L+16LL=12+1+16x2=44k/ft

W, *xL* 4.4 %202
My = = = ——— = 220 kft

Enter AISC Table 3-10 with L, = 20 ft and M, = 220 kft.

\

Try W12x53
02

W,=12D.L+1.6L.L=12%1.053+16%2 =446 k/ft C
\F
W, *L* 4.46 %202
Mu = =
8 8

= 223 kft

C L
Re — enter table 3 — 10 .. Use W12x53 (¢,M,, = 230.5=> M ‘,My'

=223 kft OK —
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+» Example 10:

Using 50 ksi steel and LRFD method, select the lightest available section for
the situation shown in the figure below. Bracml\i’is provided only at the ends
=_—

and center line of the member, and L, = 17 ft.

[)1) - 30 k
Pl, — 4“ l\
Lateral l Lateral |
aters : -
- - bracing Latera
CxanE \9" %‘/ « «— bracing
/ Lk':.ﬁ ;f;;/
e————"17 1 -t - 17 ft >
=2 34 ft >

P,=12P,+1.6P, =12%30+1.6+40 =100k

_PR,xL 100+ 34 -f/

M, == = 850 kft

From table 3-1: bending coefficient (C,= 1.67)

_ 850
M, ef fective = Te7 = 508.982 kft = 509 kft

Enter AISC Table 3-10 with L, = 17 ft and M, effective= 509 kft.

WG xFH4

?\ Try W24x76 (¢, M,from table 3 — 2 = 750kft < M,, = 850 kft ~ N.G
D/b Try W27>@(<prpfrom table 3 — 2 = 915kft > /\/\V\ =

At

Q
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k
W,=12D.L=12%x0.084 =0.101 f_t

W, x12 P,+L 0.101%342 100 * 34
- - = 865 kft

“ 8 4 8 * 4 —_—

Ly, — Lp
ppMy, = Cy QDbMp - (QDbMp - (pb0-7Fny) I [ < (prp
r—Lp

M —167[915 (915 559)(17—7'31 )]<915
P = - 208—731)]=

opM, = 1101 kft < 915kft .- d/v\“=316_ >§Jﬁ§
FY'S
OR: 9, My, = Cp[@pMpy — BF(Ly — L,)] < @pMpy
opM,, = 1.67[915 — 26.4(17 — 7.31)] < 915
©pM,, = 1100 kft < 915kft

& @pM,, = 915kft

~ Use W27x84 (oM, = 915 > M, = 865 kft OK)
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«» Example 11:

Using 50 ksi steel and LRFD method select the lightest available section for

the situation shown in the figure below. Bracing is provided only at the ends

and at midspan. ,P.‘ / L( 67* \,-L Eb\
Gﬁ, =6k

ik D = 1.0 k/ft
B L =1.75 k/ft
X////////////// ////////////'
77/;< ;< 7 Lateral
4 14 ft ) o 14 ft ) bracing

d L

28 ft

E
Y

k
Wu=1.2D.L+1.6*L.L=1.2*1+1.6*1.75=4f—t

P,=12+«D.l+16+LL=12x6+16+x8=20k

20 k 4.0 k/ft
Y

P A AT LT 5T A T T AT L T E L

‘66k 14 ft 14 ft 1

66 k

66 32 18 x
10

—10\ » 2

532

o TN 8E

w

472.5

Mnuu‘ =532

M, = 206.5
M = 364
M
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12.5M,,, 4

C. =
—3)-/ = 2.5Mpqy + 3M, + 4M5 + 3M,

oo 12.5 % 532
b 25%532+3%2065+4*364+3x472.5

Mey

32
M, ef fective = 138 385.507 = 386 kft

} (W ]
Enter AISC Table 3-10 with L, = 14 ft and M, effective= 386 kft.

/Y

Try W21x62 (¢, M,from table 3 — 2 = 540kft > M,, = 532 kft . ok

k
W,=12D.L+16*LL=12%(1+0.062)+1.6*1.75=4.0744—
TN— ft

P,=12xD.l+16*LL=12x6+16%x8=20k

_Wu*LZ_l_Pu*L_4.0744*282+20*28
-8 4 8 4

M, = 539.2912 kft

Ly, — Lp
ppM, = Cp QobMp - (QobMp - <pb0-7Fny) I — [ =< (prp
r—Lp

M. = 1.38]540 — (540 — 333) (2825 \] < 540
PpMn = & [ — (540 - )(18.1—6.25)]_

@pM,, = 558.3759 kft < 540kft

OR: @My, = Cp[@pMpy — BF(Ly — L,)] < @My
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oM, = 1.38[540 — 17.5(14 — 6.25)] < 540
opM,,, = 558.0375 kft < 540kft
& @M, = 540kft

- Use W21x62 (¢, M, = 540 kft > M, = 539.29 kft OK)
/

E} g"? Noncompact Sections:

A compact section is a section that has a sufficiently stock profile so that it is

capable of developing a fully plastic stress distribution before buckling
locally (web or flange). For a section to be compact, the width thickness

ratio of the flange of W or other | sections must not exceed a (b/t) value (A,

= 0.38,/E/F,), similarly, the web in flexural compression must not exceed

an (h/ty) value (A, = 3.76,/E/E,). The values of b, h, t, and t,, are shown in

1T

[ ]

the figure below. | by =2b | J( le—by = b—s]
If*t <j> {r:f

i
1L

b=b—3
h=h,—3
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A noncompact section is one for which the yield stress can be reached in
some, but not all, of its compression element before buckling occurs. It is
not capable of reaching a fully plastic stress distribution. The noncompact
section are those that have width thickness ratio greater that (A,), but not
greater than (A) (from table B4.1b of AISC specification). For the

noncompact range, the width thickness ratio of the flanges of W shapes must

not exceed (A = 1,/E/E,), while those for the web must not exceed (A =
5.7/E/E,).

If we have section with noncompact flange, when A,< A <A, the value of M,

Is given by the equation to follow, in which k; = 4/ \/tz > 0.35<0.76:

A=
M, = C, [M,, — (M, — 0.7F,S,) <ﬁ>] (AISC Equation F3 — 1)
r p

Almost all of standard W, M, S, and C shapes listed in the AISC Manual are
compact, and WW. All of these
shapes have compact webs, but few of them have noncompact flanges. You
need to be careful when you work with built up sections as they may fall into
noncompact or slender classification. For built up section with slender

flanges (that is A > ;)
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AZ

TABLE 9.1 Width-to-Thickness Ratios: Compression Elements in Members Subject to Flexure
Limiting Width-to-Thickness Ratios
9 Width-to- A Ar
S | Description of |Thickness| compact / noncompact /
Element Ratio noncompact) slender) Example
10 ( Flanges of b/t 0.38 £ 1.0 l£ ;.l_).u }JZ.; 3! .
rolle.:d I-shaped Fy E, Tt T lﬁﬂj_
sections, chan- T
nels, and tees E
lal{b] b b
11 | Flanges of dou- b/t 0.38 /£ 0.95 KE ey 1 naa LA
bly and singly £, Fi T
symmetric -—tr-th ——H--
- I-shaped built-
E up sections
£
2
= . E E {
= | 12 | Legs of single b/t 0.54. /= 091. /= b - |-
S ST INE =ty
= angles v y t
) - gm— =7 b
E — ———
g
=) E E t
13 | Flanges of all bi 0.38. | — 10,/ = - ¢
I-shaped sections £ Ey _ b gl
and channels in T Re==H-b
flexure about the
weak axis
14 | Stems of tees an 0.84 l‘£ 1.03 /E 2N | d
F, F, r
15 | Webs of doubly- h/t 3.76. | £ 5.70 (5 t ?
w . — - w W
‘E symmetric , E, Ut Ih -4y -h
°E-’ I-shaped sections
= and channels
= g
T : he [E [E
g | 16 | Webs of singly- A/, PRV 5.70. 1 =
g?:_’ symmetric P <A 2
»n I-shaped M, ) '
sections (0‘547y - 009)
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TABLE 9.1 {(Continued)
Limiting Width-to-Thickness Ratios
9 Width-to- A A
G | Description of Thickness|  compact/ noncompact/
Flement Ratio | noncompact) slender) Example
17 | Flanges of rec- b/t 112 (£ 1.40 [E
tangular HSS F, £ B
and boxes
of uniform
thickness
£ B E b
5|18 Flange cover b/t 1.12 £ 1.40 £ ,._b - 4 By
E plates and dia- F, Ey T[ Tt
g phragm plates 7 -—Y-_
g between lines
& of fasteners or
= welds
19 | Webs of rectan- h/t 2.42 |E 570 /E
gular HSS and £y £y
boxes
20 | Round HSS Dit 0075 031L
F, Fy
4
la] K. = r but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.
hit,
fb] F; = 0.7F, for major axis bending of compact and noncompact web built-up I-shaped members with §,,/5,, = 0.7, F; =
F 8,15 >0.5F , for major-axis bending of compact and noncompact web built-up I-shaped members with S, /S, < 0.7.
[c] M, is the moment at yielding of the extreme fiber. M, = plastic bending moment, kip-in. (N-mm)
E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
F, = specified minimum yield stress, ksi (MPa)

Source: AISC Specification, Table B4.1b, p. 16.1-17. June 22,2010. “Copyright © American Institute of Steel
Construction. Reprinted with permission. All rights reserved.”

s Example 12:

Determine the LRFD flexural design stress for the 50 ksi W12x65 section

which has full lateral bracing.
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Solution
Using a W12 X 65 (b; = 12.00in,t; = 0.605in, S, = 87.9in’, Z, = 96.8 in’)

Is the flange noncompact?

A,,=038‘/ -038\/ -—915

’f 12 00
= = 992
A 21y (2)(().605)

E 29 X 10°
A= 1.(),/— = 1.0,/—— = 24.08
d K 50

Ay =915<A=992<A,=2408

.". The flange is noncompact.

Calculate the nominal flexural stress.

<
|

= (50)(96.8) = 4840 in-k

K=tk
M, =|M, - (M, - 0.7F, S*')(A — A”)} (AISC Eq F3-1)
r pP

-

24.08 — 9.15

; 9.92 — 9.
M, = | 4840 — (4840 — 0.7 X 50 X 87.9)( 2= 01 )]

= 4749 in-k = 395.7 ft-k

Determine ¢, M

LRFD ¢, = 0.9

M, = (0.9)(395.7) = 356 ft-k

Note: These values correspond to the values given in AISC Table 3-2.
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Eccentric Connections. %

ECCENTRIC BOLTED CONNECTIONS:
SHEAR ONLY

The column bracket connection shown in Figure 2 is an example of a bolted con-
nection subjected to eccentric shear.

Elastic L"{'}f}s\

InFigure 3a, the fastener shear areas and the load are shown separate from the col-
umn and bracket plate. The eccentric load P can be replaced with the same load act-
ing at the centroid plus the couple, M = Pe, where e is the eccentricity. If this

\ Qv
FIGURE 2 P

FIGURE 3 P

(a) (b)
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replacement is made, the load will be concentric, and each fastener can be assumed
to resist an equal share of the load, given by p. = P/n, where n is the number of fas-
teners. The fastener forces resulting from the couple can be found by considering the
shearing stress in the fasteners to be the result of torsion of a cross section made up
of the cross-sectional areas of the fasteners. If such an assumption is made, the shear-
ing stress in each fastener can be found from the torsion formula

Md
Y 5= !

where

d = distance from the centroid of the area to the point where the stress is being

computed
J = polar moment of inertia of the area about the centroid

and the stress f, is perpendicular to d. Although the torsion formula is applicable only
to right circular cylinders, its use here is conservative, yielding stresses that are some-

what larger than the actual stresses.
If the paralle]-axis theorem is used and the polar moment of inertia of each circular

area about its own centroid is neglected, J for the total area can be approximated as

@J: Y Ad? = AY d*

provided all fasteners have the same area, A. Equation 8.1 can then be written as

Md
and the shear force in each fastener caused by the couple is
Md Md
P = Af = A =
" T AYd Td?

The two components of shear force thus determined can be added vectorially to ob-
tain the resultant force, p, as shown in Figure 3b, where the lower right-hand fastener
is used as an example. When the largest resultant is determined, the fastener size is
selected so as to resist this force. The critical fastener cannot always be found by in-
spection, and several force calculations may be necessary.

It is generally more convenient to work with rectangular components of forces.
For each fastener, the horizontal and vertical components of force resulting from di-
rect shear are

B

P
ch:‘;‘;"andpc)::;'
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where P, and P, are the x- and y-components of the total connection load, P, as shown
in Figure 4. The horizontal and vertical components caused by the eccentricity can
be found as follows. In terms of the x- and y-coordinates of the centers of the fastener

areas,
Sd’ = (2 +y)

where the origin of the coordinate system is at the centroid of the total fastener shear

area. The x-component of p,, is

_Yy, _y M

Md _ My
T2 +yhH T +yH

4
d

Similarly,
A

X
Pmy = Y2 + 90

and the total fastener force is | ’/\
p = p)? +(Ep,)

FIGURE 4 14 X

Y

where

2P = Pex t P
2Py = Pyt Py
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Example @ Determine the critical fastener force in the bracket connection shown in Fi 3.
Ol I —— /'J m\—;—\ PR

Solution  The centroid of the fastener group can be found by using a horizontal axis Wgh

the lower row and applying the principal of moments: }A%
o>~
@ _ 25+ 28) + 211) _ 6in U}) 4
-

X

= '1.7§8

The horizontal and vertical components of the load are

1 . 2 ,
Q- = 5 (50) = 2236 kips and  py = 7= (50) = 4472 kips i

K% Refemng to Figure . 6a, we can compute the moment of the load about the centroid:
[ \X M =4472(12 + 2.75) - 22.36(14 — 6) = 480. 7 in.-kips (ckjjw:se) "

FIGURE 5
BT
E\JO“* ,- 3y Mot s50% &5
—_— 3y
A )

%]
H

S %ﬂ 1 21:

)
A
A
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FIGURE 6 P, = 22.36*
A
[} ‘0
>l P, = 44.72%
14" ° I 15
[+] o
y36
Y Y ol
A =275 4——12———-—-

21.7%
{c)

Figure 6b shows the directions of all component bolt forces and the relative magni-
tudes of the components caused by the couple. Using these directions and relative mag-
nitudes as a guide and bearing in mind that forces add by the parallelogram law, we
can conclude that the lower right-hand fastener will have the largest resultant force.

(\_(" The horizontal and vertical components of force in each bolt resulting from the
60 /_%ﬂnc load are
@pm = 2238 _ 5 995 kips < and p,, = 72 _ 5599 kips 4
8 8
For the couple,
Eyz +y*)=8(2.75)* + 2(6)* + ()* + (2)* +(5)*1=192.5 in.?
P == _H0TO) _ 14 08 kips
5&)’ 73 T4y 1925 —
N \
3 K Py = fﬁ — = BONLTD) _ 6 367 kips 4
S(x*+y°) 192.5 -
R
\
bd"

v 6
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EP =2 795.+ 14.98 = 17.78 kips — 4th year lectures (2020-2021)
> p, =5.590 +6.867 = 12.46 kips 4

—pp=(17.78 +(12.46)* =217 kips (see Figure 6c)

7/
3 ECCENTRIC WELDED CONNECTIONS:
‘Y SHEAR ONLY YELRES

Eccentric welded connections are analyzed in much the same way as bolted connec-
tions, except that unit lengths of weld replace individual fasteners in the computa-

Elastic Analysis

The load on the bracket shown in Figure  16a may be considered to act in the plane of
the weld—that is, the plane of the throat. If this slight approximation is made, the load
will be resisted by the area of weld shown in Figure 16b. Computations are simpli-
fied, however, il a unit throat dimension is used. The calculated load can then be
multiplied by 0.707 times the weld size to obtain the actual load.

FIGURE 16 F

\ P
e 0.707w
! M=P
'%,I/,IIII. e = e

(a) (h)

An eccentric load in the plane of the weld subjects the weld to both direct shear
and torsional shear. Since all elements of the weld receive an equal portion of the
direct shear, the direct shear stress is

P

f|=z

where L is the total length of the weld and numerically equals the shear area, because
a unit throat size has been assumed. If rectangular components are used,
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> P,
fe=E md  fy=F

where P, and P, are the x- and y-components of the applied load. The shearing stress
caused by the couple is found with the torsion formula
Md

fp = — 7

where

d = distance from the centroid of the shear area to the point where the stress is
being computed
J = polar moment of inertia of that area

Figure 17 shows this stress at the upper right-hand corner of the given weld. In
terms of rectangular components,

J = j r2dA = L‘(x2 + yH)dA = _[szdA+jAy2dA =1, +1,

where I, and /,, are the rectangular moments of inertia of the shear area. Once all
rectangular components have been found, they can be added vectorially to obtain the
resultant shearing stress at the point of interest, or

h =S R+ E 5

As with bolted connections, the critical location for this resultant stress can usually
be determined from an inspection of the relative magnitudes and directions of the di-
rect and torsional shearing stress components.
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Example 5 Determine the size of weld required for the bmcké%ﬁ(&%ﬁ&ﬁwogﬁw 1)

service dead load is 10 kips, and the service live load is 30 kips. A36 steel is used for
the bracket, and A992 steel is used for the column. '
£ Fo XX

- 10"
FIGURE 18 y I+_»|

D=10¢
¢L=30k

AT

12"

SN

prriiliadd

Wi2 x 170

w

TR RN

DRI R

W
«

G A

dw
LRFD Solution P,=1.2D +1.6L = 1.2(10) + 1.6(30) = 60 kips

The eccentric load may be replaced by 4 concentric load and a couple, as shown in
Figure 18. The direct shearing stress, in kips per inch, is the same for all segments

of the weld and is equal to
60 60 .
=———=—=2143ki .
h=gin+s ps/in

Before computing the torsional component of shearing stress, the location of the cen-

troid of the weld shear area must be determined. From the principle of moments with
summation of moments about the y-axis,

X(28) =8(4X2) or Xx=2286in

The eccentricity e is 10 + 8 — 2.286 = 15.71 in., and the torsional moment is
M = Pe =60(15.71) = 942.6 in.-kips

If the moment of inertia of each horizontal weld about its own centroidal axis is ne-
glected, the moment of inertia of the total weld area about its horizontal centroidal axis is

I = 115 (MU2)* + 2(8)X6)* = 7200 in.*
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Similarly,

1
I, = 2[-1-5 (1)@8)° + 84 - 2.286)2] +12(2.286)* = 195.0 in.*

and
J=I + Iy =720.0+ 195.0=915.0in.*

Figure 18 shows the directions of both components of stress at each corner of
the connection. By inspection, either the upper right-hand corner or the lower right-
hand corner may be taken as the critical location. If the lower right-hand corner is
selected,

_ My _942.6(6)

Jax = 6.181 kips/in.

J 915.0
_ Mx 942.6(8-2.286) o
hy = r; 9150 = 5.886 kips/in.

£, =V(6.181)2 +(2.143+5.886)? = 10.13 kips /in.

Check the strength of the base metal. The bracket is the thinner of the connected parts
and controls. . the base metal shear yield strength per unit length is

¢R, = 0.6Ft = 0.6(36) (%J =12.2 kips/in.

the base metal shear rupture strength per unit length is

OR, =0.45F,t = 0.45(58)(%) =14.7 Kips/in.

The base metal shear strength is therefore 12.2 kips/in. > 10.13kips/in.  (OK)

the weld strength per inch is
¢R, = ¢(0.70TwEy)

The matching electrode for A36 steel is E70. Because the load direction varies on
each weld segment, the weld shear strength varies, but for simplicity, we will con-
servatively use F,, = 0.6Fgyy for the entire weld. The required weld size is therefore

e R 10.13
T 0. 70NFy  0.75(0.707)(0.6 x 70)

Answer  Use a Y-inch fillet weld, E70 electrode.

= 0.455 in.

10
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ASD Solution  The total load is P, = D + L =10+ 30 = 40 kips.

The eccentric load may be replaced by a concentric load and a couple, as shown in
Figure ::.18. The direct shearing stress, in kips per inch, is the same for all segments
of the weld and is equal to

0 40 o
=2 5 | 429 kips/in.
fr= g 248 " 28 ps/in

To locate the centroid of the weld shear area, use the principle of moments with sum-
mation of moments about the y-axis.

x(28)=8(4)(2) or x=2.286in.
The eccentricity e is 10 + 8 ~2.286 = 15.71 in., and the torsional moment is
M = Pe =40(15.71) = 628.4 in.-kips

1f the moment of isertia of each horizontal weld about its own centroidal axis is neglected,
the moment of inertia of the total weld area about its horizontal centroidal axis is

I = é (1X(12)* + 2(8X6)* = 720.0 in.*
Similarly,

I, = ’ZL—li(l)(S)3 +8(4- 2.286)2]+ 12(2.286)* = 195.0 in.*

¥

and
J=I+ 1= 720.0 + 195.0=915.0 in.*

Figure 18 shows the directions of both components of stress at each corner of
the connection. By inspection, either the upper right-hand corner or the lower right-
hand corner may be taken as the critical location. If the lower right-hand corner is
selected,

_ My _628.4(6)

i = 4.121 kips/in.
foe =7 =550 = 4121 Kips/in
Mx  628.48—2.286) .
== =3.924 kips/in.
oy T 9150 3.924 kips/in

£, = V(&.121)? + (1429 +3.924)" = 6.756 kips/in.

Check the strength of the base metal. The bracket is the thinner of the connected
parts and controls. ~ the base metal shear yield strength per unit
length is

R, 9
—~=04Ft=0.436)| — |=8. ips/i
0 v ( )(16) 8.10 kips/in.

the base metal shear rupture strength per unit length is

11
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-—g—; =0.3Ft=0.3(58) (?6-) =9.79 kips/in.

The base metal shear strength is therefore 8.10 kips/in. > 6.756 kips/in.  (OK)

the weld strength per inch is
R, 0.707wky

—

Q Q

The matching electrode for A36 steel is E70. Because the load direction varies on
each weld segment, the weld shear strength varies, but for simplicity, we will con-
servatively use Fy=0.6F g for the entire weld. The required weld size is, therefore,

L_QR/Q) _ Q) __200(6756)
" 0.707F, 0.707F, 0.707(0.6 x 70)

=0455in. ..use % m.

Answer  Use a Y-inch fillet weld, E70 electrode.

12
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Eccentric Connection Analysis:

s ic analysis and the
Two approaches exist for the solution of this problem: thc': traditional elastl.cll o ji,lustrated -
Fore accurate (but more complex) ultimate strength analysis. The first one wi
this chapter,

Flastic Analysis procedure:

I. Find external load eccentricity e.

2. Find bolts centroids for two directions x and y.

Lad

; i applied force
Find the direct shear force =~p—p~f———.
no.of bolts

4. Find the couple moment = applied load x ¢ .

5. Find the horizontal and vertical forces on the bolts .

d Mxdx
pm(H)_—_z_””‘_y Po(Varat®

(x2+y2)’ L(x2+y2)

6. Find the resultant force R= ‘/ZUX)Z-+-Z(f}’)2

il )
7. Bolts stress'="Fny =
Bolt area

13
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w mo lho
: . : : . ni A USHg v
Determine the foree in the most stressed bolt of the group shownin kg
clastic analysis method.  ~ B

te

N AT L J pj 30k
?".?% ’g:;/ l.ﬂ—-—-ém
\

B'f' =45 }m— 1%
z=3:l3 s /

4 — ; c.gofbohs
?"

g)

o\ o
u

i
o O\s"a/

Y \pb/ %q}& | _L_{;m /

A :

Solution: a4 ©
i

0 “ 7

d , D
|}

A sketch of each bolt and the forces applied to it by the direct load and the
clockwise moment are shown in Fig, From this sketch, the student can see that the
upper right-hand bolt and the lower right-hand bolt are the most stressed and that their
respective stresses are equal:

e=6+15=75in
S

14
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P o
P e O

1 I
l

/3

£/8 lp i
tty = ey =)
Iv v
“+ O 58
!'1’18 £8
Oe— 5 oy L

M = Pe = (30K)}(7.51in) = _;—s‘n -k

eg \K— +4 5
g.?.dz = (8)(1.5 5)7 + (4)(1.5% + 4.57) = 108 in”

For lower right-hand bolt

M& (%2‘3 in-k)(4.5in)

?t‘lx/ T T A =

(225 in-k)(1.5in)

t\fg

e ML N s

f)ml,k(a sd? 108 in? /ﬁ'k v
P o Dk

W, S§ " 37 !
5 = 375k

o

; o
I'nese components for the tawcr right-hand bolt are sketched as follows:

e

The resultant force applied to this bolt is

? % V(3.13 + 375)7 & (938)% = 11

O3 k
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‘/ Asst. Lect. Haider Qais
Fxample: 5 Design of Steel Structure
4th year lectures (2020-2021)

Use an elastic analysis to de :
termi : acket con-
nection of Figure ine the maximum bolt sk ¢ in the br

1 20'
l/&"‘ bl Q-b' -\

= _ .5 - [0
> 3_@;T g s
0
v f |

€ 10”

Solution:

Direct shear components:
Py = 2(20) = 12kips, P, - 2(20) = 16 kips
‘-p_az-laz-:::}kjps-o p0'='lié=4kips;
Eccentricity: e, = 10in., y=94+1.5-4.5<=6in.

4) M = 12(6) + 16(10) = 232 in.-kips
252+ )2) = 2[(4.5) +(1.5)] = 45.0in.2

Topboltiscritical. x = Q, Y=92=4.5Mn W}#

MY 232(4.5 _ -
P Ty T A5k = 2. 2kips @

2.Px=3423.2 =26.2 kips—

2.py =4 Kips |
P AP +(Zp)T = JO6TTEY - 26,51 p p
{ 2py) = J(26.2)2 Gy - 26. 5 kips = 26.5 kips
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Asst. Lect. Haider Qais
xample: “k Design of Steel Structure
4th year lectures (2020-2021)

fate is used as a bracket apd i« . - -
P bracket and is attached to & coluiny flauge as shown in Figure Use an elastic

analysis aud compute the maximum boit sk ce

Sglugion;

Direct shear component: Py = -655 = 13.0 kips |

Determine location of centroid with respect to lower left bolt:

-
—

iy 2HD o341
Ecoentricity: o, = 3-!-2_“;‘-_{.'8 =9.2in,
M = 659.2) = $98.0 In-kips
28 +3%) = (1.8Y(2) + (3 - L8(3)+ (3.4)%(2) + G.4-3) +(7-3.4)%(2)
= 60.0 in?
Top right bolt is critical, x = 3 18=12Mn, yp=3+d-3dm 3.6in.
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Asst. Lect. Haider Qais
Design of Steel Structure

= My ~ 998(3.6) 4th year lectures (2020-2021)
Lms 3 (2 +3%) 60 = 35. 88 kips —»

= —Mx  _ 598(1.2) :
Pry S +7) 60 = 11.96kips |

2.px=35.88Kips>  Yp, = 13411.96 < 24. 96 Kips |

P= ) +(Zp) = [G5587 +(24.96)7 = 43.71 kips /

P = 43.7 kips

Example: 5

A plate is used as a bracket and is attached to a column flange as shown in

Figure. Use an elastic analysis and compute the maximum bolt shear force

’4—3”'*‘4—4”—»—
-l 30%
1
B
1 + 15*
273 i =
I S T
3 | X 4
I
3% ﬂ“@s_)
Y O 1 ?‘L
74| © |
[l
11
L l
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. Asst. Lect. Haider Qais
Solution: Design of Steel Structure
4th year lectures (2020-2021)

Direct shear components:
& J—i =
oo Fmdkine fi g
. \j\) { \
Determine location of centroid w'i’t‘lf:x;;;ect to lower right bolt
i{g}l = 1 g
5 1. 2in., Y=13in
Eccentricity: ¢, = !
= 1.2 = i
M/ &x +4 5.2in, 9-3+2=5in.
=3005.2) - 15(5) = 8].0 in.-kips ry

2(x2+ %) = 3(1.2)2 +2(1.8)2+4(3)? = 46, 8 in 2

Lower right bolt js critical.  x=1.2in y=3j
: 1.2in, in.

13
- Ts“él = 5. 192 kips «

o~ — ML 81012)

Z(x’ +57) 68 = 2. 077 kips |

:=345.192 = i
2.Px=3+5.192 = 8. 192 kips « 2Py = 6+2.077 = 8,077 kips

P={Cp) +(Xp): = /& 192)* + (8.077)?

= 11. 5 kips

v/

p=11.5 kips
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Asst. Lect. Haider Qais
Design of Steel Structure
4th year lectures (2020-2021)

Problems

‘D X Flexural Srrength
\_(_' ( 10.4-1)  Determine the Wﬁ%ﬁf the following welded shape: The flanges
7Y are 3 inches x 26 inches, the web is ch x 78 inches, and the member is simply

1\ supported, uniformly loaded, and has continuous lqtf_@iwm AS572 Grade ’59 steel
’46 1 is used. - ~——" *
N

[ 10.4-2 ) Determine the nominal flexural strength of the following welded shape: The flanges are
1 inch X 10 inches, the web is *} inch X 45 inches, and the member is simply supported,

uniformly loaded, and has continuous lateral support. A572 Grade 50 steel is used.

Z 10.4-3 ) Determine the nominal flexural strength of the following welded shape: The flanges
are § inch x 12 inches, the web is >} inch X 60 inches, and the member is simply sup-

ported, uniformly loaded, and has a span length of 40 feet. Lateral support is provided
at the ends and at midspan. A572 Grade 50 steel is used.

z 10.4-4 ) Determine the nominal flexural strength of the following welded shape: The flanges
are 3§ inch x 18 inches, the web is '} inch x 52 inches, and the member is simply sup-

ported, uniformly loaded, and has a span length of 50 feet. Lateral support is provided
at the ends and at midspan. A572 Grade 50 steel is used.

2 10.4—5, An 80-foot-long plate girder is fabricated from a 'J-inch X 78-inch web and two
3-inch x 22-inch flanges. Continuous lateral support is provided. The steel is A572
Grade 50. The loading consists of a uniform service dead load of 1.0 kip/ft (includ-
ing the weight of the girder), a uniform service live load of 2.0 kips /ft, and a con-
centrated service live load of 500 kips at midspan. Stiffeners are placed at each end
and at 4 feet, 16 feet, and 28 feet from each end. One stiffener is placed at midspaii.

Determine whether the flexural strength is adequate.
a. Use ] RFD.
b. Use ASD.

P, = 500

wp= LOPE, w, =2.048
P ¥V v 3§ ¥ P ¥ ¥ &y v vy

A

A A
4’_0”_; l— 4’-011

207 L 120" 120”1207 | 120" 112747

80!-0" .

FIGURE P10.4-5
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Asst. Lect. Haider Qais
Design of Steel Structure

CHAPTER 10 - PLATE GIRIffRYear lectures (2020-2021)

10.4-1

Check ¢lassification of shape.

ko I8 _ E _ 29,000
== gs =156, 5.70/Fy = 5.70 /--——50 =137.3

% -fi > 5.70 / , the web is slender and AISC Section F5 applies.
) I\ <

w

N 2 2
- = L3 k_“f_) L 3 78+3
\i{, L= +2Af( i L-0.5)(78) +2(3x26)( 3 )
=2.757 x 105 in.*
I I 275,700 .
L= X = x — 2 - 4 .3
2270 T Gnry T (B8R CO0m

Tension flange: M, = F,S, = 50(6564) = 3.282 x 10 in.-kips

Compression flange: LTB is not a facior in this problem. Check FLB:

A= b 2(6)_4333<1_038/ 038f290°0 ~9.152

2

v Fo = F, = 50 ksi

— —_ aw
Rpg =1 1200+300aw(tw —3>1F )3

_ hetw _ 78(0.5) _
aw = 34 = TGy = 0-5<10

0.5 29,000 .
Rpe =1~ =0. .
PG 1200 + 300(0.5) (156 o 8 70 == ) 0.9931 < 1.0

My, = RpeF oSy = 0.9931(50)6564 = 3. 259 x 105 iu.-kips

Compression flange strength controls. M, = 325900/12 = 2. 716 x 10* ft-kips
dsM, = 27,200 ft-kips
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Asst. Lect. Haider Qais
Design of Steel Structure
4th year lectures (2020-2021)

10.4-2

Check classification of shape.

_h _ 45 _ . £ _ 29,000 _ 437 3
A=L -8, xr_s.mIFy = 5.70,f 5 37.

Since A < 4,, the web 1s not slender.

_ £ _ 25000 _
xp_3.76ny 3.76 | 2000 = 90. 55

Since , 4, < 4 < A,, the web is noncompact.

. _ by _ 10 _ _ [£ ~0.38/22:000 _ 915
Flange: A 2 20 5< i, =0.38 F, 0

. flange is compact. Since the flange is compact and the web is noncompact, AISC F4
applies (Table User Note F1.1), but AISC F5 may be conservaiively used (F4 User

Note).

Compression flange strength (because of symmetry, teusion yielding will not control):

er = Rngchxc

Since the ﬂa;lgc is compact, F, = F, = 50 ksi, and LTB is not a facto. in this problem.

Ry = 1 — ——du he 55 [E ) <
Rpg =1 1200+300aw(:‘w- e Fy)_l'o

_ hetw _ A56/8) _ g 10

= bt T0(D)
=1- 1. 688 _5.7 29000 ) _ 1 017> 1.0 - use 1.0
Ree = 1= 13563 300(1. 689) (120 S s )

2 2
h3+2Af(M) - L@mas)y? +2010) (451" — 13,430 1m.¢

Iy = 5

e
12
1 I 13,430 .
= X = X = 2 = 571. 5 .
=T = Gnry T @heD -
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My = RpeFoSe = 1.0(50)(571.5) = 28,580 in.-kips = 2380 ft-kips
M, = 2380 ft-kips

10.4-3

Check web width-thickness ratio:

_h _ 60 _ E _ 29,000 _
)“"rw =373 = 160, Ap =3.76 7, 3.76 0 90. 55

_s.70 [E - [29000 _
A, =5.70 Fy 5.70 50 137.3

Since A > 4,, web is slender and AISC Section F5 applles Compute the section

modulus:
2
= 1, 3 Aty L 3 7 (60+7/8)
I = Lt +z,4( : ) L-68)60)° +2( x12)
= 2.621 x 104 in.*
]x _ Ix _ 26210 = 848. 9in.3

== Uy ) (6072 +7/8)

From AISC Equation F5-10, the t“cnsion flange strcngth based on yielding 1s
M, = F,Sy = 50(848.9) = 4.245 x 107 in.-kips = 3538 ft-kips

The compression flange strength is given by AISC Equation F5-7:

M, = ngchxc

" where the critical stress Fcr is based on either flange local buckling or yielding. For

flange local buckling, the relevant slenderness parameters are

b 12 _ - £ _ 29000 _
A oy 6857 A 0.38/Fy 0.38 - 9.152

Since A < A, there is no flange local buckling. The compression flange strength 1s

therefore based on yielding, and F., = F, = 50 ksi.
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To compute the bending strength reduction factor R, the vgmeygfa cgJ:e\%§Hrg§ 4%9596:2021)

a = hetw _ 60(3/8)

= =2.143 <10
b_fciff- 12(7/8) <

From AISC Equation F5-6,

. Aw he E
Res = 1= 7200 + 300a, ( L > E, ) = L

_ 2.143 _ 5 7 [29000 ) — 0.9736
I 1200+300(2.143)(160 7750 '

M, = RpgForSye = 0.9736(50)(848.9) = 4. 132 x 10* in.-kips = 3443 ft-kips

Check lateral-torsional buckling.

A _ 60 _ 19 _ 1 i, 1 3 _ 4
L8 _y0in, 1--Laoes+-Laman=1260m

— _ 2 - (L _ }-._,,_125 _ ;
A = 10(3/8)+ 12(7/8) = 14. 25 in.*, ¥y = 1 = 4423 2.974 n.

Ly =402 =20%

Ly = Llr [£ = 1.1(2.974) % = 78. 79 in. = 6.566 ft
,/ - _

— E _ 29000 _ = -
L, = nr, 0.7F, = m(2.974) 0‘7(59) 268.91in. =22.40 ft

Since L, < Ly < L,, the girder is subject to inelastic lateral-torsional buckling. From
AISC Equation F5-3, |

Fer = Cb[wao.sﬁy(—‘Eﬁ:—ff’” <F,
r—Lp

= 1.30[50 - (0.3 x 50) (52458286 ) | = 48. 46 ksi < 50 ki

where Cp = 1.30 is from Figure 5.15 in the textbook. LTB has the lowest critical stress
and controls.

My = RpgF oSy = 0.9736(48.46)(848.9) = 4. 005 x 10* in.-kips = 3338 fi-kips

M, = 3340 ft-kips
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10.4-4

Check web width-thickness ratio:

_ h _ 52 _ _ E _ 29,000 _
A= t, =1/ = 208, Ap =3.76 7, —3.761_50 90. 55

_ £ _ 29000 _
,1,-;5.70(]:}’ 5.70 | o 137.3

Since A > A,, web is slender and AISC Section F5 applies. Compute the section

modulus:
2
= Lp MJLL W52y 423 (M)
L = <5tk +2Af( : L (a)52) +2(2 x18) =

=2.171 x 10* ia.*

I i 21710 s
L L ~811.6in.
=TT Gty (a3 o

From AISC Equation F5-10, the t=nsion flange strength based on yielding is
M, = F,Sx = 50(811.6) = 4. 058 x 10 in.-kips = 3382 ft-kips
The compression flange strength is given by AISC Equation F5-7:

My = RpgF oSe

" where the critical stress F., is based on either flange local buckling or yielding.

To compute the bending strength reduction factor R, the value of a,, will be needed:

het, | 52(1/4)
v = = %) 0.9630 < 10
D= bt | 18(3/4) =

From AISC Equation F5-6,

I Ay i_ £ | <
Rpg = 1 1200+300aw(l‘w 2t Fy)_l'o

e 0.9630 _ < 5 [29000 ) — 0.9543
: 1200 + 300(0.9630) (203 7450 ‘
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For flange local buckling, the relevant slendemness paraftteye@electures (2020-2021)

T | 038 [E 33 [B000 _ g 59
A T TETY 12.0, Ay = 0.38 a2 0.38 | £55 15

case & A/zﬁgs/f/% X = /)W_ ] / E

VoA

ko= —4 -4  _02774<035 . use k. = 0.35
Jhit,  f5200.25

Fr=0.7F, = 0.7(50) = 35.0ks1

_ [ 0.35(29000) _
Ar =0.95 350 =16.18

Since A, < A < 4,, the flange is noncompact, and FLB must be investigated.

Fcr: [Fv_03Ev( )\“—;Lp

T = p

) ] (AISC Eq. F5-8)

= [50-0360({2E=51S ) | - 3 92k

Check lateral-torsional buckling.

b 56—2 =8 667, [I= —117(3/4)(18)3 + %(3.667)(1/4)3 = 364. 5 in.4

6
34" | 18" N
[ [
_L..: -
8.667"
I
1/4" ] e

(pot to scale)

A = 8.667(1/4) + 18(3/4) = 15.67 in2, 7 = E = [385 _ 483

Ly=50/2=250ft
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7 11, n 29000 _ o =

Ly = 117y 7:5)“ :].](4.843) —50"“ =127.8in.=10.65f
e [E 29000 _ 436 1 in 36,34 ft

Ly = mr, 0.7F, 7{4.823) 0.7(50) 36.11n. 3

Since L, < Ly < L,, the girder is subject to inelastic lateral-torsional buckling. From
AISC Equation F5-3,

rT&p

_ _ (25.0-10.65 Y] _ | S0 ksi - use 50
1.30[50 (0.3x50)(36.34_10-65 ] 54.11 ksi > 50 ksi .. us

ksi
where C; = 1.30 is from Figure 5.15 in the textbook. FLB has the lowest critical stress
and controls. '
My = RpgForSxe = 0.9543(43. 92)(3] 1. 6)/12 = 2835 ft-kips
M, = 2840 ft-kips

10.4-5

Check classification of shape.
h _ _50 [E _ /i - [29,000 _ 47 5
= 005 5.70 7, 1140.0 (F},) 5.70 50 .

Since —ti > 5.70 ’?E— , the web is slender and the provisions of AISC F5 apply.
¥

w

_ L, LES /A 3 78+3)?
I = Ltk +2Af( : ) L(0.5)(78) +203 x22)( 1853 )

=2.363 x 10° in.*

L _ L _ 236300  _ sgrgin?
C T Ghin) T s+ oK

Sy =

Tension flange: M, = F,Sy = 50(5626) = 2. 813 x 10° in.-kips
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Compression flange: ~ LTB is not a factor in this problenfityeSE fecgires (2020-2021)

b 22 Gy E _ .38 [2%000 _g 5
A=l = o = 3667 < 4 0.38/F}: 0.38 [ =5 9.152

,)‘

v Fo = Fy = 50 ksi

=1_ Aw he _ £
Rog = 1 1200+300aw(rw 2 Fy)S]'O

_ hetw _ 78(0.5) _
Qv Bl 2203) 0.5909 < 10

o 0.5909 _ /29,000): 20 < 1.0
Rog = | 1200+300(0.5909)(156 >7 50 0.9920 < 1.

M, = RpgF oSy = 0.9920(50)(5626) = 2. 79 x 10 in.-kips

Compression flange strength controls. M, = 279000/12 = 2. 325 x 10# ft-kirs
(a) LRFD

dpM, = OT_E_)Q(2325O) = 20,900 ft-kips

Wy = 1.2;)9 +1.6w, = 1.2(1.0) + 1.6(2) = 4. 4 kips/ft

P, = 1.6P; = 1.6(500) = 800.0 kips

My = L2 Pl _ 1 g 433002+ 39980 _ 19 500 fi-kips
8 4 8 € 4
Since 19,500_ft—kips < 20,960 ft-kips, flexural strength is adequate
(b) ASD

M, _ 23250 _ 4 o1
0, W 1.392 x 1G* ft-kips

we = wp+wy =1+2 =3 kips/ft

P, = Pr = 500 kips

My = Lw 2+

! Pal _ 1 (3)(80) + 22U80) — 12410 firkips

4
Since 12,400 ft-kips < 13,900 ft-kips, flexural strength is adequate
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Chapter 9: Bending and Axial Force

«» Members subjected to bending and axial tension:

A few types of members subjected to both bending and axial tension are

shown in the figure below. In section H1 of the AISC specification, the

interaction equations that follows are given for symmetric shapes subjected

to bending and axial tensile forces.

P
For—>=0.2,

P
For—< 0.2,

. /JI/ 7

.

e
P 4—’4—\ (b) A hanger subject to an axial tensile
“1 load and a lateral load (as wind)
or other moment from lateral forces

(a) A hanger subject to an off-center
tensile load

w, kift

S O N

(c) A beam subject to a uniform gravity
load and an axial tensile load

+

oo
_|_
O| @©
S
=
S

C

/-~
=

&
S

Ty) < 1.0(AISC Equation H1 — 1a)

<

P (M, M
L < % M”’) < 1.0 (AISC Equation H1 — 1b)
cy

cxX

S
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In which:

P. = required axial tensile strength, P, kips
P. = design axial tensile strength (¢;B,) Kips
M,. = required flexural strength, M,, kft

M, = design flexural strength (¢, M,,) kft

s Example 1:

A 50 ksi W12 X 40 tension member with no holes is subjected to the axial loads
Pp =25k and P, = 30k, as well as the bending moments Mp, = 10 ft-k and
M, = 25 ft-k. Is the member satisfactory if L, < L,?

Using a W12 X 40 (A = 11.7 in?)

LRFD

P,o=P, = (12)(25k) + (16)(30k) = 78k
M,y = My, =(1.2)(10 fik) + (1.6)(25 fi-k)
= 52 fi-k

P.o= B, = $,F,A, = (09)(50ksi)(11.7 in’)

= 5265k
M., = dyM,, = 630 fi-k (AISC Table 3-4)

!4 Tk
F-_- = m = 148 < 0.2

. Must use AISC Eq. H1-1b

-Fr Hﬂ' M"-"
EE+[H,,+H = 1.0

L7

7% 5
(2)5268) | (u i E':i)

= (L899 < 1.0 OK
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s Example 2:

A W10 X 30 tensile member with no holes, consisting of 50 ksi steel and with
Ly, = 12.0 ft, is subjected to the axial service loads P, = 30k and P, = 50k and to
the service moments Mp, = 20 ft-k and M;, = 40 ft-k. If C, = 1.0, is the member
satisfactory?

Usinga W10 X 30 (A = 8.84in’, L, = 4.84ftand L, = 16.1 ft, $yM,,, = 137 ft-k, BF
for LRFD = 4.61 from AISC Table 3-2)

LEFI

P, = B, = (12)(30k) + (L6)(S0K) = 116k
M., = M, = (L2){20 ft-k) + {1.6)(40 fi-k)

= B M-k

Po= $P, = BiF A, = (09)(S0 ksi)(B.84 in”)
= 3978%

M, = duM,, = E-lﬂ"bupr = BF(Ly - Lr}]

= 1LO{137 — 461120 — 4.84)]
= 1040 ft-k

116
=378 029 =02

. Must use AISC Eq, Hl-1a

B gy My
E*i(E*Hq)’“”

116 Bf 8%
W89 m.q*“)

= LI > LONG.

==
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«» First and Second Order Moment for Members Subjected to Axial

Compression and Bending:

When a beam column is subjected to moment along its unsupported length,
it will be displaced laterally in the plane of bending. The result will be an
increase or secondary moment equal to the axial compression load times the
lateral displacement or eccentricity. In the figure below, we can see that the
member moment is increased by an amount (P 6), where Py is the axial
compression load determined by a first order analysis. This moment will
cause additional lateral deflection, which will in turn cause a larger column
moment, which will cause a larger lateral deflection, and so on until
equilibrium is reached. M; is the required moment strength of the member.
My is the first order moment, assuming no lateral translation of the frame.

|

1 ) m,

',] The moment will be

[ increased by the

e second-order moment P, &
1

\

\

M,=M, + P,é

nt nr
\
\ “wﬁf

T }'ﬂf

If a frame is subjected to sidesway when the ends of the column can move

laterally with respect to each other, additional secondary moments will

result. In the figure below, the secondary moment produced due to sidesway
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Is equal to Py A. The moment Mr is assumed by the AISC specification to

equal My (which is the moment due to the lateral loads) plus the moment due

t0 Pt A. "A’l P
m//jwlt

/  The moment will be
[ increased by the
| second-order moment P,,A

\j Mr:*MI{+Pn{A

A

Py

The required total flexural strength of a member must at least equal the sum
of the first order and second order moments. Several methods are available
for determining the required strength. The AISC specification chapter C
states that we can either make a second order analysis to determine the
maximum required strength or use a first order analysis or amplify the

moments obtained with some amplification factors called B, and B,.

«» Approximate second order analysis:

You can find this method in appendix 8 of the AISC specification. Using
this method we will make two first order analyses one an analysis where the
frame is assumed to be braced so that it cannot sway. We will call this
moment My and will multiply them by a magnification factor B, to account

for the P effect. When we will analyze the frame again, allowing it to sway.
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We will call these moments M;; and will multiply them by a magnification

factor B, to account for the PA effect.

The final moment in a member will equal,

M, = BiM,; + B,M;;  (AISC equation C2 — 1a)

The final axial strength P, must equal,

P. =P, + B,P; (AISC equation C2 — 1b)

++ Maagnification Factors:

The magnification factors are B; and B,. With B, the analyst attempts to
estimate the P.o effect for a column, whether the frame is braced or
unbraced against sidesway. With By, the analyst attempts to estimate the PiA

effect in unbraced frames.

The horizontal deflection of a multistory building due to wind or seismic
load is called drift (A). Drift is measured with drift index (An/L), where Ay IS
the first order lateral inter-story deflection and L is the story height. For the
comfort of the occupants of the building, the index is usually limited at
working loads to a value between 0.0015 and 0.0030, and at factored loads

to about 0.0040.
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The expression of B; was derived for a member braced against sidesway. It
will be used only to magnify the M,, moments (those moment computed

assuming that there is no lateral translation of the frame).

_m
P

1—a=-
Py

B; = > 1.0 (AISC Equation C2 — 2)

In this expression G, is a term that is defined in the next section, « is a
factor equal to 1 for the LRFD method; P. is the required axial strength of
the member, and P,, is the member Euler buckling strength calculated on

the basis of zero sidesway.

m2El

P, =
T (KyL)?

(AISC Equation C2 —5)

One is permitted to use the first order estimate of P, (that is, B. = P,,; + P;;)
when calculating magnification factor B;. Also, K; is the effective length
factor in the plane of bending, determined based on the assumption of no
lateral translation, and should be equal to 1.0 unless analysis justifies a

smaller value.

In a similar fashion P, is the elastic critical buckling resistance for the story
in question, determined by a sidesway buckling analysis. For this analysis,

KoL is the effective length in the plane of bending, based on the sidesway
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buckling analysis. For this case, the sidesway buckling resistance may be
calculated with the following expression, in which X is used to include the

entire column on that level or story.

ZP —z TEL IS¢ equation €2 — 6
2= L KL ( equation a)

Furthermore, the AISC permits the use of the following alternative

expression for calculating ), P,,

Y HL
P,, =R
z e2 m AH

Rm =1 for braced frame system and 0.85 for moment frame system.

(AISC equation C2 — 6b)

Y. H = story shear produced by the lateral loads used to compute Ay, Kips

L = story length, in

Ay = First order interstory drift due to the lateral loads

The value shown for ), P,,; and }; P,, are for all of the columns on the floor
in question. This is considered to be necessary because the B2 term is used
to magnify column moments for sidesway. For sidesway to occur in a
particular column, it is necessary for all the columns on the floor to sway

simultaneously. The ) H value used in the first of the B2 expression
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represents the sum of the lateral loads acting above the floor being

considered.

1

2 Pt
l1—as+—
ZPeZ

Bzz

¢ Moment modification or C, factors:

In the expression for B;, a term Cp, called the modification factor was
included. The magnification factor B; was developed for the largest possible
lateral displacement. On many occasions the displacement is not that large,
and B; over magnifies the column moment. As a result, the moment may

need to be reduced or modified with the C,, factor.

l P,
M
N

M \
\
\

\ -Max M, =M+ P,8

AL
M
{2,

(a) Column (b) Column moments

(s}
N
=)

~1
$

In the figure above, we have column bent in single curvature, with equal end
moments such that the column bends laterally by an amount 6 at mid depth.

The maximum total moment occurs in the column clearly will equal M plus
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the increased moment P6. As a result no modification is required and Cp, =
1.0. An entirely different situation is considered in the figure below, where
the end moments tend to bend the member in reveres curvature. The initial
maximum moment occurs at one of the ends, and we should not increase by
the value of P because we will be overdoing the moment magnification.

The purpose of the modification factor is to modify or reduce the magnified

moment. l P
M M
—
M{ 1y
\
| \
/ \
/
+ = Maximum moments
7
'./ e donotequal M + P8
| .
|
\ P05
— M
M M
Py
(a) Column (b) Column moments

Modification factor is based on the rotational restraint at the member ends
and on the moment gradients in the member. The AISC specification C1

includes two categories of Cp,.

In category 1, the members are prevented from joint translation or sidesway,
and they are not subject to transverse loading between their ends. For such a
member, the modification factor is based on an elastic first order analysis.

M
C,.=06— o.ztﬁ1 (AISC equation C2 — 4)
2
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1

In this expression Z— Is the ratio of the smaller moment to the largest
2

moment at the ends of the unbraced length in the plane of bending under
consideration. The ratio is negative if the moments cause the member to
bend in single curvature, and positive if they bend the member in reversed or

double curvature.

Category 2 applies to members that are subjected to transverse loadings
between the joints in the plane of loading. The AISC specification states that
the value of Cm for this situation may be determined by rotational analysis
or by setting it conservatively equal to 1.0. The value of Cm of category 2
may be determined for various end conditions and loads by the values given

in Table C-C2.1.
P, = Pr = is the required column axial load

Pe1 = is the elastic buckling load for a braced column.

m2El

P,y =—— (AISCE ] 2 —
et = K D)2 (AISC Equation C2 —5)

+» Beam column in braced frame:

The same equations are used for member subjected to axial compression and
bending as were used for member subjected to axial tension and bending. Pu

is referring to compression force rather than tension force.
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To analyze beam column or member subjected to both bending and axial
compression, we need to make both first and second order moment analysis
to obtain the bending moment. The first order moment is usually obtained by
making an elastic analysis and consists for the moment M, (due to lateral

loads — due to lateral translation)

Theoretically, if both the loads and frame are symmetrical M will be zero.

Similarly, if the frame is braced My, will be zero.

Case P Cp,
S fr 0 10
4 A '
04 | 1-04%
_p [TTTTITTTIITTT - ' TPy
I 3
L

aP,
~0.4 1-045-

~

/ Pel
— . MY
7.
aP,
-0.2 1-02+—
S S — P
aP

12— —0.3 1035
e f——
7
aP,
/ —02 | 1-02%"
Pe]
s ez
Va

Source: Commentary on the Specification, Appendix 8-Table
C-A-8.1,p16.1-525. June 22, 2010. “Copyright © American
Institute of Steel Construction. Reprinted with permission. All
rights reserved.”
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W12 X 58
(I, = 475in*, re—
KLx = KLb
= 20 ft)
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(a) No sidesway and no transverse loading.
Moments bend member in single curvature.

C, = 0.6 — (0.4) (— %) =092

(b) No sidesway and no transverse loading.
Moments bend member in reverse curvature.

— 06— 60
C, =06 0.4(+ 80) 0.30

(c) Member has restrained ends and transverse loading
and is bent about x axis.
C,, can be determined from Table 11.1
(AISC Table C-A-8.1) as follows:

aP, =280k
po— mEl _ @H)(29 X 10°)(272)
el T (KL)? (12 x 20y
= 1351k
C, =1-04 (+ %8—501-)= 0.92

(d) Member has unrestrained ends and transverse loading

and is bent about x axis.
C,, can be determined from Table 11.1
(AISC Table C-A-8.1).

aP, = 200k
2 3
p = I XINETS)
(12 % 20)
. 200 _
C, =1-02 (+ —-—236()) 0.98
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+» Example 3:

A 12-ft W12 X 96 (50 ksi steel) is used as a beam-column in a braced frame. It is bent

in single curvature with equal and opposite end moments and is not subjected to inter-

mediate transverse loads. Is the section satisfactory if P, = 175k, P; = 300k, and

first-order Mp, = 60 ft-k and M, , = 60 ft-k?

Solution. Using a WI2 X 96 (A = 282in%, I, = 833in% dpM,, = 551 ft-k,
L,=109ft, L, = 46.7 ft, BF = 5.78 k for LRFD).

LRFD
LRFD
a1 wEl,  (7%)(29,000)(833)
P,,, o P“ — (1.2)(175) r (1())(300) = 690 k elx (Kle)Z (10 X 12 X 12)2
M = My, = (1.2)(60) + (1.6)(60) = 168 ft-k = 11,498 k
For a braced frame, let K = 1.0 G 1.0
le = - = = 1-()64
_ aP, (1.0)(690)
" (KL), = (KL), = (1.0)(12) = 12 ft 1 - P AT
P. = ¢.P, = 1080 k (AISC Table 4-1) M, = By My, = (1.064)(168) = 178.8 ft-k

Since L, = 12ft > L, = 1091t < L, = 46.6 ft

P,= Py + By P, = 690 + 0 = 690 k
- .. Zone2
F’ = {’(;0—0 = 0.639 > 0.2
% M ) = 1.0[551 — (5.78)(12 — 10.9)] = 544.6 ft-k
.. Must use AISC Eq. Hl-1a
M, P, 8( M, M’y
= - — — 4 — +
Che =06 - 04 M, P, 9( M. | Mo
168 690 8/178.8
Cor =06 — ().4(——) = 1.0 | = 4 _(__ A ) = 0931 < 1.0
168 1080 T 9\ 5446 " ° P 0OE

". Section is satisfactory.
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We can use table 6-1 and the following simplified equations to solve

(example 3).
For pP. = 0.2, pPB. + byM,, + b,M,.,, < 1.0 (Equation 6 — 1)

1 9
Forph <02,  Sph+g (bM, + b,M,,) < 1.0 (Equation 6 — 2)

s Example 4:

Repeat Example 11-3, using the AISC simplified method of Part 6 of the Manual and
the values for K, L, P, and M,, determined in that earlier example.

LEFI}

o EI, s (w7 )(29,000)( 833)

P, :
BUKGL)E (10 % 12 % 12)7
= 11498 k
i L0
By, = —ar, " T G0@) 1064
PI'I:I' 11!4495

M., = B, M,, = (1.064)(168) = I?ﬂ.ﬂ fi-k
Since Ly = LEh‘.‘-'L,=1ﬂ.9h-ﬂL,=ﬂ5.ﬂﬂ
. Foned

dyM,, = LO[SS] — (STRY(12 — 10.9)] = 5446 fi-k

M
Fr O M Ty
P O\M., " M,

6 B/ 1TRE

=E+E(m+u)-m1{mﬂu

. Section is satisfactory.
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+» Example 5:

A 14-ft W14 X 120 (50 ksi steel) is used as a beam-column in a braced frame. It is bent
in single curvature with equal and opposite moments. Its ends are rotationally
restrained, and it is not subjected to intermediate transverse loads. Is the section satis-
factory if Pp, =70k, and P, = 100k and if it has the first-order moments
Mp, = 60 ft-k, M, = 80 ft-k, Mp, = 40 ft-k, and M, = 60 ft-k?

Solution. Usinga W14 X 120 (A = 35.3in% I, = 1380in*, 1, = 495in*, Z, = 212 in’,
Z, = 102in’, L, = 132 ft, L, = 51.9 ft, BF for LRFD = 7.65k ).

LRFD LRFD

P, = P, = (12)(70) + (1.6)(100) = 244k L g(_b_,M,_‘ +b,M,,) = 10

M, = M, = (1.2)(60) + (1.6)(80) = 200 ft-k
11X u ( )( ) (1.6)(80) = %(0.730 2 10_3)(244)

Moy = M,, = (12)(40) + (1.6)(60) = 144 f-k

For a braced frame K = 1.0

KL = (1.0)(14) = 14 ft

P. = ¢.P, = 1370 k (AISC Table 4-1)

+ 3(1.13 x 107%)(203.6)

- 3(2.32 X 107%)(151.3)

=0.743 = 1.0 OK

Section is satisfactory but perhaps overdesigned.

P,=Pn,+ﬂzpl,=244+()=244k
P 244

— = —=()178 < 0.

P~ 1370 ).1 0.2

.. Must use AISC Equation H1-1b

200
Cpx =06 — 0'4(—ﬁ) =10

4 (7%)(29,000)(1380)

etx—— A 13,995 k
(1.0 X 12 % 14)?
1.0
le = W = 1.018
13,995

M, = (1.018)(200) = 203.6 fi-k
144

,=06-04 —) =10

Cpy = 0.6 04(l ) 1.0

2)(29,000)(495
P = eSS DONABSN L ook
Y10 X 12 % 14)?
1.0
= =105
By, (1.0)(244) 1.051

5020
M,, = (1.051)(144) = 151.3 ft-k

From AISC Table 6-1, for KL = 14 ftand L, = 14 ft

p =0730 X 1072,b, = 1.13 X 107,
b, =232 X 107




Asst. Lect. Haider Qais

Design of Steel Structure
4th year lectures (2020-2021)

+» Example 6:

For the truss shown in Fig. 11.7(a),a W8 X 35 is used as a continuous top chord mem-
ber from joint L, to joint U;. If the member consists of 50 ksi steel, does it have suffi-
cient strength to resist the loads shown in parts (b) and (c) of the figure? The factored or
LRFD loads are shown in part (b), while the service or ASD loads are shown in part (c).
The 17.6 k and 12 k loads represent the reaction from a purlin. The compression flange
of the W8 is braced only at the ends about the x-x axis, L, = 13 ft, and at the ends and
the concentrated load about the y-y axis, L, = 6.5 ft and L, = 6.5 ft.

U,
0, ]
U1 15 ft
: [
759/'/ ;;!2;/
> 6at 12 ft = 72 ft >
(a)
17.6 k 12 k
U, 200 k 140 k
L 50 5%
0 5 ® 6 = ® S
200 k e 140 k \A/ it
(b) Factored loads (¢) Service loads
(LRFD) (ASD)

Using a W8 X 35 (A = 10.3in I, = 127in*, r, = 3.51in, r, = 2.03in, Lp = 7.17 ft,

Mp,
M p, = 130 ft-k, Q” = 86.6 ft-k, rx/r, = 1.73).
b
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LRFD

Plu = P" from ﬁgure =200k = Pr

Conservatively assume K, = K, = 1.0. In truth,

the K-factor is somewhere between K = 1.0 (pinned-

pinned end condition) and K = 0.8 (pinned-fixed
end condition) for segment L,U;

KL\ _ (1.0)(12 X 13) -
(T)‘ e 3.51 Sidaad
KL\ _ (1.0)(12 X 65)
(T) " 2.03 =Sl

From AISC Table 4-22, F, = 50 ksi

&.F., = 38.97 ksi

é.P, = (38.97)(10.3) = 4014k = P.

F, 200
—_—= e— = ), > 0.
P, 14 0.498 > 0.2

.. Must use AISC Eq. Hl-1a

Computing P,,, and C,,,
%)(29,000)(127
elx = ( )( )( ) = 1494 k
; (1.0 X 12 X 13)?
From Table 11.1
For
7, 7
clee 02(1.0 (200)) — 0973
mx = . 1494 s YA
For N
7
o ()3(1.0(200))_0%0
mx = i O 7 T T S

Avg C,,.. = 0.967

Computing M,
For 17.6 k

ﬁ/ %A

PL _ (17.6)(13)
4

Mup==—= 4 = 57.2 ft-k
For 17.6 k
N
7
_3prL_ (3)(17.6)(13)
My === = = = 429 ft-k
Avg M, = 50.05 ft-k = M,,
0.967
By=————"=1116
M (1)(200)
1494

M, = (1.116)(50.05) = 55.86 ft-k
Since L, = 65ft < L, = 7.17 ft

.. Zone @)
dsMyy = 130 ftk = M,

Using Equation H1-1a

P, M, M,
—+§(——i+—~l)sl.0

P, M, M,
200 8(55.86

— == +0) =1
401.4 9( 130 0) R

0.880 = 1.0 Section OK

| From AISC Table 6-1

(KL),=6.5 ft

(KL)ygpuiy = —— = —= = 1.51 ft

| P=250X107, for KL=7.51ft

b, =68 %1073, for L,=6.5 ft
pPAb M +bM, =10

© =(2.50%107%) (200) + (6.83 X 10™?) (55.86) +0

=0.882<1.0 Section OK
Section is Satisfactory.
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+» Design of Beam Column Braced or Unbraced:

The design of beam column involves a trial and error procedure. A trail
section is selected by a procedure and then checked with the appropriate
interaction equation. If the section does not satisfy the equation, or if it is too
much on the safe side (overdesigned), another section is selected and the

interaction equation is applied again.

A common method used for selecting sections to resist both moment and
axial loads is the equivalent axial load or effective axial load method. In this
method the axial load P, and the bending moments My, My are replaced
with a fictitious concentric load P, equivalent to approximately to the

actual axial load plus the moment effect.

Equations are used to convert the bending moment into an equivalent axial
load Py, which is added to the design axial load P,. The total of P, + Py is
equivalent or effective axial load Pey,, and it is used to enter the concentric

column tables of part 4 of the AISC manual.

Pequ = By + My,m + My, mu

To apply this expression, a value of m is taken from the first approximation
section of table 11-3, and u is assumed equal to 2. In applying the equation,

the moments must be used in kft. The equation is solved for Peg,. After that a
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column is selected from the concentrically loaded column tables. Then the

equation of Py, is solved again with a revised value of m from the

subsequent approximation part of the table, and the value of u is kept equal

to 2.
TABLE 11.3 Preliminary Beam—Column Design Fy = 36 ksi, Fy = 50 ksi
Values of m
F, 36 ksi 50 ksi
kiol 10 | 12 | 14 | 16 | 18 | 20 P 0| 12| 14| 16| 18 | 20 |22
over over
1st Approximation
Shiges 20 1.9 1.8 1.7 1.6 1.5 1.3 1.9 1.8 17 1.6 1.4 1.3 1.2
Subsequent Approximation
w4 | 3.1 23 1.7 1.4 1.1 1.0 0.8 24 1.8 14 1.1 1.0 0.9 0.8
ws | 32 2.7 2.1 1.7 14 1.2 1.0 2.8 22 17 1.4 1.1 1.0 0.9
w6 | 2.8 2.5 2.1 1.8 1.5 1.3 1.1 25 22 1.8 1.5 13 1.2 1.1
W8 | 25 23 22 2.0 1.8 1.6 1.4 24 22 2.0 1.7 1.5 1.3 1.2
w10 | 2.1 2.0 1.9 1.8 1.7 1.6 1.4 2.0 1.9 1.8 1.7 1.5 14 1.3
wiz2 | 1.7 1.7 1.6 1.5 1.5 14 13 1.7 1.6 1.5 1.5 1.4 13 1.2
w14 | 1.5 1.5 1.4 1.4 13 1.3 1.2 1.5 14 14 1.3 1.3 1.2 1.2
Source: This table is from a paper in AISC Engineering Journal by Uang, Wattar, and Leet (1990).
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s Example 7:

Select a trial W section for both LRFD and ASD for the following data: F, = 50 ksi,
(KL),=(KL),=12ft, P,,= 690 k and M,,,, = 168 ft-k for LRFD, and P,, =475 k

LRFD
Assume B; and B, = 1.0
S Po=P,=P,+By(Py)
P,=690+0=690k

and, M,, =M, = B{(M,,) + Bo(My,)

M, = 1.0(168) + 0= 168 ft-k

Pyeg=Py+ My m+M,, mu

From “1*" Approximation” part of Table 11.3
m = 1.8 for KL =12 ft, F, = 50 ksi

u=2.0 (assumed)

Peq =690+ 168(1.8) +0=992.4 k

1*" trial section: W12 X 96 (®.P, = 1080 k)
from AISC Table 4-1

From “Subsequent Approximation™ part of
Table 11.3,W12’s

m=1.6
Preg =690+ 168(1.6) + 0 =958.8 k
Try W12 X 87, (PP, =981 k >958.8 k)

Note: These are trial sizes. By and B,, which were assumed, must be calculated and these W12 sections
checked with the appropriate interaction equations.
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s Example 8:

Select a trial W section for both LRFD and ASD for an unbraced frame and the
following data: F, = 50 ksi, (KL), = (KL), = 10 ft.

For LRFD: P, = 175 k and P, = 115 k, M,,,, = 102 ft-k and M, = 68 ft-k, M, =
84 ft-k and M, = 56 ft-k

For ASD: P,,=117 k and P, =78 k, M,,,, =72 ft-k and M, = 48 ft-k, M,,,, = 60 ft-k
and My, =40 ft-k

Solution

LRFD
Assume By, By, B;, and B, = 1.0

S. P,=P,=P,;+By(Py)
P,=175+1.0(115) =290 k
and, M,, = M, = B (M) + B2,(M,,,)
M, = 1.0(102) + 1.0(68) = 170 ft-k
and, M,, =M, = B,(M,,,) + B2 (M)
M, =1.0(84) + 1.0(56) = 140 ft-k
Pieg= Py+ Myan + M, mu
From “1* Approximation” part of Table 11.3
m =19 for KL =10 ft, F, = 50 ksi
1 =2.0 (assumed)
Prueqg =290+ 170(1.9) + 140(1.9)(2.0) = 1145 k
1™ trial section from Table 4.1:
Wi4 - W14 X 99 (d.P,=1210k)
WI2 - WI2 X 106 (®.P,=1260k)
W10 — W10 X 112 (®.P, = 1280 k)

Suppose we decide to use a W14 section:

From “Subsequent Approximation™ part of
Table 11.3, W14’s

m=1.5
Peq =290 + 170(1.5) + 140(1.5)(2.0) = 965 k
Try W14 X 90, (O.P, = 1100 k > 965 k)

Note: These are trial sizes. By, B,,, B, and Bzy, which were assumed, must be calculated and these W14
sections checked with the appropriate interaction equations.
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+» Example 9:

Select the lightest W12 section for both LRFD and ASD for the following data: F,, = 50
ksi, (KL),=(KL), =12 ft, P,, =250 k, M,,,, = 180 ft-k and M,,,, = 70 ft-k for LRFD, and
Py =175 k, My, = 125 ft-k and M,,,, = 45 ft-k for ASD. C, = 1.0, C,,, = C,,, = 0.85.

LRFD

LRFD

Assume By, = By, = 1.0, B; not required
S P,=P,=P,+ By(Py)
P,=250+0=250k
and, M, =M, = B{(M,,,) + B(My,)
M, =1.0(180) + 0= 180 ft-k
and, M,, = M,, = B{(M,,) + By(M,,)
M, = 1.0(70) + 0 =70 ft-k
Pyeg= Py + Mym+ M, mu
From “Subsequent Approximation” part of
Table 11.3, W12’s
m=1.6
u=2.0 (assumed)
Peq =250+ 180(1.6) + 70(1.6)(2.0) = 762 k
Try W12 X 72, (®.P, =806 k > 762 k) from Table 4.1
From Table 6.1 for KL =12 ftand L, =12 ft
p=124 X107,b,=223 X 107,b,=4.82 X 107

P/®.P, = 250/806=0.310>0.2
Use modified Equation H1-1a.

1.24 x 107 (250) +2.23 X 107 (180) +4.82 x 107°
(70)=1.049>10 N.G.

Try W12 X 79, (® P, = 887 k > 762 k) from Table 4.1
From Table 6.1 for KL =12 ftand L, =12 ft

p=113 X 107,b,=2.02 X 10°%,b,=4.37 x 107

1.13 X 107 (250) +2.02 % 107 (180) +4.37
X 1073(70)=0952<1.0 OK

(:hcck Bh‘ _- Bl\' = lO
= EI' 7(29,000)(662)

elx = S ot = 9138 k
(KLY (10 X 12 X 12)
Cnn s 0.85 = i
B | _aP, ey~ h
P 9138
B, =10, OK
2 EI 72(29.000)(216
e B ( A ), = 2981k
(KLY (10X 12 X 12)
Cony 0.85
= = 2 = 093<1;
By, [ _aP, 10(50) 9=l
Py, 2081
Bl‘,':l.(). OK

With By, = B, = 1.0, section is sufficient based on
previous check using modified Equation H1-1a.

Will perform additional check using Equation H1-1a:
For W12 X 79,® M, =446 ft-k, L, = 10.8 ft, L, =39.9 ft
BF=5.67,L,=121t,Zone 2, C, = 1.0,® M,,, =204 ft-k
OM,.= Cy, [® M, - BF(L, - L,)| ® M,

DOM,,, = 1.0 [446 — 5.67(12 - 10.8)] =439.2 ft-k

oM, - M, =204 ft-k

Equation H1-1a:

250 8/ 180 70
e i S PR o W
887 9(439.2 i 204) Bl S A0NOK

Use W12 X 79, LRFD.
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Chapter 8: Design of Beams for shear, deflection, etc

¢ Shear
Generally, shear is not a problem is steel beams, because the webs of rolled
shapes are capable of resisting large shear force. Perhaps it is well, however,

to list here the most common situations where shear might be excessive:

1. Should large concentrated loads be placed near beam supports, they
will cause large internal forces without corresponding increase in
bending moments.

2. Where beams are notched or coped shear can be problem. For this
case, shear forces must be calculated for the remaining beam depth. A
similar discussion can be made where holes are cuts in beams webs
for ductwork or other items.

3. Theatrically, very heavily loaded short beams can have excessive
shears.

4. Shear may be a problem even for ordinary loading when very thin

webs are used.

The shear stress formula f,, = VQ/Ib , where V is the external shear; Q is
the statical moment of that portion of the section lying outside (either above

or below) the line on which f, is considered, taken about the neutral axis;
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and b is the width of the section where the unit shear stress is desired. The
figure below shows the variation in shear stress across the cross section of an
I-shape member. It can be seen that the shear in I-shape section is primarily

resisted by the web.

If the load is increased on an I-shape section until the bending yield stress is
reached in the flange, the flange will be unable to resist shear stress and it
will be carried in the web. If the moment is further increased, the bending
yield stress will penetrate farther down into the web and the area of the web
that can resist shear will be further decreased. Rather than assuming the
nominal shear stress is resist by part of the web, the AISC specification
assume that a reduced shear stress is resist by the entire web area. This web
area, Ay, Is equal to the overall depth of the member, d, times the web

thickness, t.

—
X
Al V
ittle larger than o
d — i, h “
- G
i s =065 Chud)
VAR i\k
Y [ l_ Y

A
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The nominal shear strength of unstiffened or stiffened webs is specified as

V, = 0.6E,A,,C, AISC Equation G2 — 1)

w

Using this equation for the webs of I-shapes members when ti < 2.24\/?,
y

we find that C, = 1.0,and ¢, = 1.0 (almost all current W, S, and HP
shapes fall into this class. The exceptions are listed in Section G2 of the

AISC specification.)

For the web of all doubly symmetric shapes, singly symmetric shapes, and
I-o

channels, except round HSS, <pm used to the design shear strength,

o, V,,, the web shear coefficient, is determined from the following situations

and substituted into AISC equation G2-1:

a. For ti < 1.10 /% C, = 1.0 (AISC equation G2-3)
w y
K.E K.E 1.10 FE
b. For 1.10 / - < 1.37 / - (AISC equation
G2-4)

C. Fortl >1.37 /% c, = =2 (AISC equation G2-5)
y

w (a) 2 Fy

The web plate shear buckling coefficient, K,, is specified in AISC

specification G2.1b, parts (i) and (ii). For webs without transverse stiffeners


Haider Qais
Pencil


Asst. Lect. Haider Qais

Design of Steel Structure
4th year lectures (2022-2023)

with ti < 260 : K, = 5. This is the case for must rolled I-shaped members

W

designed by engineers.

«» Exaplel.

A W21 X 55 with F, = 50 ksi is used for the beam and loads of Fig. 10.4. Check its ad-
equacy in shear,

wp = 2 k/ft (includes beam wt)
wy = 4 k/ft

Y

e 20 ft

Solution

Using a W21 X 55 (A = 16.2in*, d = 20.8in,t,, = 0.375in, and k4, = 1.02 in)
}h = 20.8 — 2ky.s = 20.8 — (2)(1.02) = 18.76 in

h _ 1876 29,000
— = =I50i08 < 22|~ 5395
T a375 G YV 50
" C,=10,¢,=10and Q, = 1.50
Ay, = d 1, = (20.8n)(0.375 in) = 7.80 in® S
.V, =06F, A,C, = 0.6 (50 ksi)(7.80 in*)(1.0) = 234 k
LRFD ¢, = 1.00

w, = (12)@2) + (1L6)4) = 88K/t LLD

&V, = (1.00)(234) = 234 k & Vi >Vu. Lo k 93y=

> 88k OK

8.§{(/ft (2'0&“) \
V= ———— = 88k )N)'
— Mo
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Notes:

1. The values of ¢,V, with F, = 50 ksi are given for W shapes in the

manual table 3-2.

2. A very useful table 3-6 |is provided in part 3 of the AISC manual for

determining the maximum uniform load each W shape can support for

various spans. The values given are for Fy, = 50 ksi and are controlled

[by maximum moment or share$ as specified by the LRFD.

3. Should V, for a particular beam exceed the AISC specification shear
strength of the member, the usual procedure will be to select a slightly
heavier section. if it necessary to use a much heavier section than
required for moment, doubler plates may be welded to the beam web,
or stiffeners may be connected to the web in zones of high shear.
Doubler plates must meet the width —thickness requirements for

compact stiffened element, Section B4 of the AISC specification.

Doubler plates welded
to beam web

Y7 /{ LA
(VA A
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0:| Deflections:

The deflections of steel beams are usually limited to certain maximum

values. Among the reasons for deflection limitation are the following:

1. Excessive deflection may damage other materials attached to or
supported by the beams.

2. The appearance of structures is often damaged by excessive
deflections.

3. Extreme deflections do not inspire confidence in the persons using a
structure, although the structure may be completely safe from a

strength standpoint.

qun" Standard American practice for building has been to limit service live load

deflections to approximatelyof the span length. The 2010 AASHTO
specifications limit deflection in steel beams and girders due to live load and
impact to§1/800>of the span length. (for bridges in Urban areas that are

shared by pedestrians, the AASHTO recommends a maximum value equal to

ﬁ/j@of the span length).

The AISC specification does not specify exact maximum permissible

deflections. There are so many different materials, types of structures, and
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loading that no one single set of deflection limitations is acceptable for all

cases. Therefore, limitations must be set by the individual designer.

Note: the deflection limitation fall in the serviceability area. Therefore,

deflections are determined for service loads.

+» Example 2:

A W24 X 55 (I, = 1350 in) has been selected for a 21-ft simple span to support a total
service live load of 3 k/ft (including beam weight). Is the center line deflection of this
section satisfactory for the service live load if the maximum permissible value is 1/360
of the span?

Solution. Use E = 29 X 10°1b/in?

_ SwLt (5)(3000/12)(12 x 21)*
¥ 3B4ET  (384)(29 x 10°)(1350)

= (.335 1n total load deflection

1
< | —= K12 X = (.70 1
(360)( 2 X 21) =0.70in OK

On the page 3-7 in the AISC manual, the following formula for determining
maximum beam deflections for W, M, HP, S, C, and MC sections for several

different loading conditions is presented:

_ MI?
G,

In this expression, M is the maximum service load moment in (kft), C; is a
constant whose value can determined from the figure above. L is the span

length (ft), and I is the moment of inertia (in*)
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w (kift) P
i [ I O N l
C, =161 V T C, =201 1
(a) (b)
S S S
1= 1=
T C| = 158 (A @ Center) T T C, =170 T
(c) Loading constants (d)

% Example 3: wo
Using the LRFD and A}d methods, select the lightest available section with
F, = 50 ksi to support a service dead load of 1.2 k/ft and a service live load of 3 k/ft for

a 30-ft simple span. The section is to have full lateral bracing for its compression flange,
and the maximum total service load deflection is not to exceed 1/1500 the span length.

Solution. After some sﬂm. aswle that beam wt = 167 Ib/ft L\a =O<

LRFD ‘L*S)
.“9\. w, = 1212 + 0.167) + (L6)3) = 6,44 KIf .-/* o
T\~ w

,
o 6.44 k/ft)(30 ft)? =
™M= : s')(—“) = 7245 ft-k N7 'ﬁ

From AISC Table 3-2, try|W24 x 7({: - 2100in*) V)

. 223

N
; rbo CA [DeE (Vs Hs R
Mammumg,rmlsslblc, A (1500 % 30) = 0.24in
MIL?
AcluaI_A‘— Cil.
(437 k)30 ft)°

M =M, = My rice =
a M.\cr\xu. 8

= 491.6 ft-k

(491.6)(30)?
A = in > 0.2
A (161)(2100) 1.31in > (.24

Min /, required to limit

Ato0.24 in

1.31

= — = 1 “
(0‘24)(2100) 11,463 in

From AISC Table 3-3
Use W40 x 167. (I, = 11,600 in*)

de<o24 Bact |
A=)12) 1-11

4
41 N
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+»» Web under concentrated loads: 802

1. Local web yielding: The subject of local web yielding is applies to all
concentrated loads, tensile or compressive. The nominal strength of
the web of a beam at the web toe of the fillet when a concentrated
load or reaction is applied is to be determined by one of the following
two expressions, in which (k) is the distance outer edge of the flange
to the web toe of the fillet, (lp) is the length of bearing (in) of the force
parallel to the plane of the web, (Fyw) is the specified minimum yield
stress (ksi) of the web, and (ty) is the thickness of the web. If the force
Is concentrated load or reaction that causes tension or compression
and is applied at a distance greater than the member depth, d, from the
end of the member, then

R, = (5k + l,)E,,ty, 9 = 1.0  (AISC Equation J10 — 2)
If the force is concentrated load or reaction applied at a distance d or

less from the member end, then

R, = 25k + l,)E,wty, , ¢ = 1.0 (AISC Equation J10 — 3)

X/

_— (sinks down
and “pooches” out)

| |
Local web yielding
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L

Web toes i e lﬁ
of fillets ™, .~ N R 2

Web toes

The nominal strength R,, equals the length over which the force is
assumed to be spread when it reaches the web toe of the fillet times
the web thickness times the yield stress of the web. Should a stiffener
extending for at least half the member depth or a doubler plate be
provided on each side of the web at the concentrated load, it is not

necessary to check for web yielding.

Web crippling: Should concentrated compressive loads be applied to a
member with an unstiffened web (the load being applied in the plane
of the web), the nominal web crippling strength is to be determined by
the appropriate equation of the two that follow (in which d is the
overall depth of the member). If one or two web stiffeners or one or

two doubler plates are provided and extend for at least half of the web
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depth, web crippling will not have to be checked. Research has shown

when web crippling occurs; it is located in the part of the web

adjacent to the loaded flange. [ ]

I |
Web crippling

If the concentrated load is applied at a distance greater than or equal

to d/2 from the end of the member, then

I ¢ 1.5
143 (—b) (—W>
d)\t

=0.75 (AISC Equation J10 — 4)

EE,tf

R, = 0.8t,,2

tw

If the concentrated load is applied at a distance less than d/2 from the

end of the member, then

Ly
for (E) <0.2

lb tw 1.5
1+3(2)( 2
d)\¢

= 0.75 (AISC Equation J10 — 5a)

EFy,t
R, = 0.4t,,’ hbddrs

)

tw

Ly
for (E) > 0.2
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! t \**| |EE,. t
1+(4—”—0.2> (—W> ywy
d tr

= 0.75 (AISC Equation J10 — 5b)

R, = 0.4t,,*

)

tw

3. Sidesway web buckling: Should compression be applied to laterally
braced compression flange, the web will be but in compression and

the tension flange may buckle as shown in the figure below.

brace ~
\‘_._ ‘I

Sidesway web buckling
It has been found that sidesway web buckling will not occur if the
compression flange is restrained against rotation, with (h/ty)/(Ly/bs) >
2.3, or if (h/ty)/(Lp/bsy) < 1.7 when the compression flange rotation is
not restrained about its longitudinal axis. In these expressions, (h) is
the web depth between the web toes of the fillet (d-2k) and (ly,) is the
largest lateral unbraced length along either flange at the point of the
load. Should member not be restrained against relative movement by
stiffeners or lateral bracing and be subjected to concentrated

compressive loads, their strength may be determined as follows:
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When the loaded flange is braced against rotation and (h/ty)/(Lv/bs) >

23,
-l A\’
Ottt oal B ) | o085 (aIsc Bquation 10 — 6
n=""73 + 0. I, ‘,go—. ( quation J10 — 6)
by

When the loaded flange is not restrained against rotation and

(h/tw)/(Lo/bs) < 1.7,
[ /h Y]
— Crtw b | tw | | _ :
R, = 2 0.4 I, , =0.85 (AISC Equation J10 —7)
by ‘

It is not necessary to check equation J10-6 and J10-7 if the webs are

subjected to distributed load. In these expressions,

C: = 960000 ksi when M, < My at the location of the force.
C: = 480000 ksi when M, > My at the location of the force.

4. Compression buckling of the web: This limit state relates to
concentrated compressive loads applied to both flanges of a member.
For this situation it is necessary to limit the slenderness ratio of the
web to avoid the possibility of buckling. Should the concentrated load
be larger than the value of @R, given in next equation, it will be
necessary to provide either one stiffener, a pair of stiffeners, or a

doubler plates, extending for the full depth of the web and meeting the
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requirements of AISC specification J10-8 (the equation to follow is

applied to moment connection but not to bearing ones).

@ =09 (AISC Equation J10 — 8)

If the concentrated force to be resisted is applied at a distance from
the member end that is less than d/2, then the value of R, is reduced

by 50 percent.

«+ Stiffeners design:

If one of the web under concentrated loads checks is not satisfactory, then

we need to design stiffeners at the location of the concentrated loads.

The stiffeners should be designed as axially compressed members in
accordance with the requirements of section E6.2 and section J4.4. the
member properties should be determined using an effective length of (kl =
0.75h) and a cross section composite of two stiffeners, and a strip of the web
having a width of (25t,) at interior stiffeners and (12t,) at the ends of
members.

the ef fective length = kl = 0.75h

ty b tr
bi+—>2, t; >+
st2 23 $=7

Ag = by * tg
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Sy — oy —
YT 4+ 126,27 07T |4, + 25¢6,2

kl
find <—> ,then @_F,,
Ty

As + 12t,% * @ F., = R (should be larger than the applied load)

As + 25t,% * @ F., = R (should be larger than the applied load)

ts tS
<+>» <+>
bs t, bs t,
. v o v
End Stiffeners | Interior Stiffeners |
f f
12t,, 25t,,

«» Example 4:

A W21x44 has been selected for moment in the beam shown in the figure
below. Lateral bracing is provided for both flanges at beam end and at
concentrated loads. If the end bearing length is 3.5 fh/and the concentrated
load bearing lengths are each :3,’1‘?1 check the beam for web yielding, web

crippling, and sidesway web buckling.
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P; =35k P; =35k
wp = 1.044 k/ft (includes beam wt)

Solution

Usinga W21 X 44 (d = 20.7in, by = 6.50in, 1, = 0.350 in, t; = 0.450 in,
k = 0.950 in)

LRFD

End reaction
W/ {a

R, = (12)(1.044 k/ft)( L

—2—> + (1.6)(35 k)

= 654k

Concentrated load

P, = (1.6)(35k) = 56k

Local web yielding
(I, = bearing length of reactions = 3.50 in, for concentrated loads /, = 3.00 in)

At end reactions (AISC Equation J10-3)

R, = 25k + NDF uty, = (2.5 X 0.950in + 3.50 in)(50 ksi)(0.350 in) = 102.8 k

LRFD ¢ = 1.00

SR, = (1.00)(102.8) = 102.8 k

> 654k OK
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R, = (5K + L)F = (5 X 0950 in + 3.00 in)(50 ksi)(0.350 in) = 135.6 k

LRFD ¢ = 1.00

¢R, = (1.00)(135.6) = 135.6 k

> 56k OK

Web crippling

[
At end reactions (AISC Equation J10-5a) since 2?2 <020

N_s

e
= (. < 0.
4= 207 0.169 < 0.20

;A 1.5 F| ’t
R 0.40:,,?[1 3 3(4)(—-) } i
d Ly Lo

3.5in \/0.350in \'?
= in)?| 1 +
(080)02a0 ) [1 3(20.7in><0.450in> }

\/ (29 X 10° ksi)(50 ksi)(0.450 in)
0.350 in

=903k

LRFD ¢ = 0.75

&R, = (0.75)(90.3) = 67.7k

> 654k OK

At concentrated loads (AISC Equation J10-4)

R, = 08012 1+ 3(M)( )" | [20netr
n w d tj‘ Iw

al s 3.0 \[(0.350\"° \/(29 X 10%)(50)(0.450)
e [1 5 3(20.7)(0.450) jl 0.350
173.7k
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LRFD ¢ = 0.75

dR, = (0.75)(173.7)

=130.3k> 56k OK

Sidesway web buckling
The compression flange is restrained against rotation.

6.50 in

L = ” / 4 . ~ -
h /Ly _ 20.7in 3><L-95£L"/ 12I/it X 51t) _ o5 o 53
ts] by 0.350 in

". Sidesway web buckling does not have to be checked.

+» Design of beam bearing plate:

When the ends of beams are supported by direct bearing on concrete or other
masonry construction, it is necessary to distribute the beam reaction over the
masonry by mean of beam bearing plate. The reaction is assumed to spread
uniformly through the bearing plate to the masonry, and the masonry is
assumed to push up against the plate with a uniform pressure equal to the
reaction R, over the area of the plate A;. This pressure tends to curl up the

plate and the bottom flange of the beam.

The determination of the true pressure distribution in a beam bearing plate is
a very difficult task, and the uniform pressure distribution assumption is

usually made.



Asst. Lect. Haider Qais

Design of Steel Structure
4th year lectures (2022-2023)

1 in wide
strip

The required thickness of a 1 in wide strip of plate can be determined as
follows,

t t t?
Z of alinwide piece of plate of t thickness = 1*—*—% 2 = —

The moment Mu is computed at a distance k from the web centerline and is

equated to ¢, F, Z; the resultant equation is then solved for the required plate
thickness.

LRFD ¢, = 0.90

. (2R
} e T N i F,
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The design strength for bearing on concrete is to be taken equal to

¢.P, according to AISC Specification J8. This specification states that when

a bearing plate extends for the full area of a concrete support, the bearing

strength of the concrete can be determined as follows:
B, =0.85f¢A; LRFD equation J8 — 1

Should the bearing load be applied to an area less than the full area of the
concrete support, ¢ B, is to be determined with the following equation, in
which A, is the maximum area of the supporting surface that is
geometrically similar the loaded area, with \/A,/A; having a maximum

value of 2:

’A
P, = 0.85f¢A, A—i < 1.7f¢A, AISC Equation 8 — 2
In these expressions f¢ is the compression strength of the concrete in psi and
A, is the area of the plate in?

For the design of such plate, its required area A, can be determined by

dividing the factored reaction R, by ¢.0.85f¢

A, =———— withe, = 0.65
1= 0.085F¢ Ve
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After A, is determined, its length parallel to the beam and its width are
selected. The length may not be less that the N required to prevent web
yielding or crippling of the beam, nor may it may be less than about 3 % or 4

in for practical construction reasons. It may not be greater than the thickness

of the wall or other support.

s Example 5:

AWI8 X 71beam (d = 18.51in,t, = 0.495in, by = 7.641in,t; = 0.810in, k = 1.21 in)
has one of its ends supported by a reinforced-concrete wall with f. = 3 ksi. Design a
bearing plate for the beam with A36 steel, for the service loads R, = 30k and

R; = 50k. The maximum length of end bearing L to the wall is the full wall
thickness = 8.0 in.

Solution
Compute plate area A,.

LRFD ¢, = 0.65 Asm’t?éi

R, = (1.2)(30) + (1.6)(50) = 116k | R, = '30v,.+,56>,.—.!s'(')’-k

o L Ry i 116 o QR,  (231)(80)
LT $.085f.  (0.65)(0.85)(3) 1085, (0.85)(3)
= 70.0 in? = 72.5 in’
Try PL8 % 10 (80 in%). Try PL 8 X% 10 (80 in%).
Check web local yielding.
R, = (25K + 1)ty (AISC Equation J10-3)

= (2.5 X 1.21 + 8)(36)(0.495) = 196.5 k
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LRFD ¢ = 1.00

R, = ¢R, = (1.00)(196.5)

= 1965k > 116k OK

Check web crippling.
ly 8 ) ]
SRNET T 0.432 > 0.2 .. Must use AISC Equation (J10-5b)
15 2 s 0
Amdaacfion (foaf ]
4 %8 0.495 (29 % 10%)(36)(0.810)
= 2 e
QA004%) [1 & ( 18.5 0 2)(0 810) :| 0.495
= 221.7k
LRFD ¢ = 0.75
R, = &R, = (0.75)(221.7)
=166k > 116k OK
Determine plate thickness.
n=1—0— 1.21 = 3.79in
2
LRED ¢, = 0.90

5 2R [2)(116)(3.79
Ny AlF, N (09)(80)(36)

= 1.13in
~
Use PL 1} X 8 X 10 (A36).
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If we were to check to see if the flange thickness alone is sufficient, we would

b
hive (wnhn - —25 L k) - 7%4 = 121 = 2,61 in.
LRFD &, = 0.90
@A16)261)

(0.9)(8 x 7.64)(36)
= 0.893in > 1, = 0.810in for WIS x 71 N.G.

". Flange t; is not sufficient alone for either LRFD or ASD designs.
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