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Abstract

Next-generation Passive Optical Networks (PONs), which are
considered one of the most encouraging optical access networks, has
remarkably developed in the past few years and intended to greatly go
forward in the nigh future. By this development the power requirements of
NGPON will growth and make it no longer coveted. This paper presents
Hybrid (WDM/ TDM) XGPON architecture, where in this optical fiber
communication system a bidirectional optical fiber has been applied with
downstream and upstream NRZ and RZ (0.6 and 0.8 duty cycle)Data
Format transmission. Distributed Raman amplification is employed for
upstream signal for improving the loss budget of XGPON system. Fiber
attenuation, splice losses, and back-reflections as in realistic fiber plant
have been considered for this XGPON system. These impairments effects
on 1270 nm upstream Raman amplified signal XGPON system have been
investigated numerically.
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1. Introduction

The growth of the Internet has led to a variety of modern applications
which need access to high-speed networks causing to the making of
bandwidth intensive Applications which require deterministic latency and
low jitter Y. Gigabit Passive Optical Networks (GPONSs) have been lately
prevailed universally and are looked forward to playing an essential role
for carrying subscribers’ needs of higher data rate. PONs are a
communication networks have no active elements along signal's pathway
,where only passive optical components are used as external elements
such as the optical fiber, splitters and splices. PON comprises of an
Optical Line Termination OLT, a passive splitter and Optical Network Unit
ONUs . The primary ONUs occupation is to obtain optical traffic and
transform it to the customer's preferred format such as IP multicast,
Ethernet, POTS, etc. Figure 1 shows logical network architecture of
different Fiber to the x technologP/ (FTTx), which x recognize as building,
cabinet, node, cell or even home =,
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Figure 1 FTTx network architecture [3]

2. Gigabit-capable Passive Optical Network (GPON)

The Gigabit Passive Optical Network is kind of the Passive Optical
Network (PON) that is commonly prevailed in today's (FTTH) networks.
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Active transmission gear in GPON network involves merely of Optical Line
Termination (OLT) and Optical Network Unit (ONU). Fiber to the home
network (FTTH) is being set up in point to point (P2P) and point to
multipoint (P2MP) time multiplexed Passive Optical Network (PON)
architectures. The Gigabit Passive Optical Network conveyance protocol
utilizes the TDMA technique in the upstream and TDM technique in the
downstream path “.Most widespread these days is the protocol of the
Time Division Multiple Access (TDMA) as jobs is being carried out with
digital electronics. GPONs provide bigger splitting ratios, superior
downstream and upstream data rates, lengthier reach, upgraded the
security and the privacy via the usage of a new GPON Encapsulated
Method (GEM) and Advanced Encryption Standard (AES) algorithm for
conveying data services and S}/nchronous voice services like (Ethernet) in

a bandwidth efficient manner !,

In the beginning at the central office (CO), merely one optical fiber
(single mode) participates to a passive optical power splitter nearby users
sites as shown in figure (2). Afterward, the optical power is divided simply
to N separated trails by splitting device to the subscribers at the optical
splitter. The number of splitting pathways be able to fluctuate from [2 —
64]. The optical fiber can be devoted from optical splitter to each user
(businesses, home, etc.). The length of the transmitted fiber optic can be
extended up to 20 km from the central office to every user .
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Figure 2 Typical GPON architecture [2]

The modern circulation in America and Europe continents is based on
the GPON optical system that is normalized via the (ITU-T series G.984)
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Bl 1t normally can be serve up to 64 workers with 1.2 Gbit/s upstream
speed and 2.4 Gbit/s downstream speed. Since the communicated fiber
optic as a mass media be able to conveyance a lot, the technology of
FTTH is expected to give more to operators. The ITU-T has issued
recently the current GPON as upcoming benign speculation of 10 Gigabit
Capable Passive Optical Networks (XGPONL1) as contemporary standard
for first generation . Speed of 2.5 Gbit/s upstream and speed of 10 Ghit/s
downstream will be presented by this modern standard, nevertheless the
split ratio and the intended distance did not grow a lot. The research of this
area keeps on the work to get even the better (P2MP) technology. A lot of
them are nowadays identified as second generation for following
generation Passive Optical Network (NGPONZ2).

3. WDM-TDM Hybrid PON

Hybrid PON (WDM-TDM) is the system that utilizes both WDM and
TDM techniques. The benefits of both multiplexing techniques are
supplied to the ending users. Various wavelengths in this architecture are
exercised to recognize communication between the number of ending
users and the Central Office (CO). This communication is achieved in two
stages. Initially, several wavelengths are allocated to various Optical
Network Units (ONUS) clusters. Every wavelength will be assigned on time
basis by numerous Optical Network Units (ONUSs) of the same cluster. The
whole wavelength is partitioned into number of wavelengths by WDM
technique. Every wavelength is assigned by a group of number of the
Optical Network Units (ONUSs) by using TDM technique and so on &,

4. Distributed of Raman amplification

Distributed of the Raman amplification has been recommended to get
well the impairments budget and develop the access of XGPON network.
So as to conserve the outer optical fiber passive in complete form, the
Raman pumped signal can be located by the side of the central office
(CO) to feed the feeder optical fiber by distributed gain for upstream
signal, whereas a semiconductor optical amplifier (SOA) or a high power
signal source can be utilized for downstream signal. Nonetheless, the
advantages of the distributed Raman amplification might be diminished
because of the losses of splices and fiber losses which is leaded to lower
Optical Signal to Noise Ratio (OSNR) and lower Raman gain .
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Furthermore, the Multiple Path Interference (MPI) might be caused by the
back reflections at the splices, hence, the signal integrity endures further
degrading. The enumeration of extra impairments produced by non-ideal
conditions that is mentioned above is very important and assess the
performance of the Raman amplified GPON as well as XG-PON extended
system with pragmatic optical fiber limits .

5. Modeling

In this paper, the OSNR degradations are investigated numerically for
upstream signal that produce by raising the attenuation of the fiber, losses
of splices and the Raman amplified XG-PON reach extender back-
reflections. A design solution able to 60 km logical reach and splitting ratio
of 1.64 is presented by utilizing the considerations of an employed
XGPON system. The XGPON system modeling that considered in this
work is shown in the Figure (3). The designed system using OPTISYSTEM
software (2013) is presented in Appendix A and the flowchart is shown in
in the Figure (4). A CWDM coupler at the Central Office combines the
Raman pump upstream signals for the 1270, 1310nm as well as
downstream signals for the 1490, 1577 nm and send them to 60-km
feeder optical fiber. An SOA enhances the 1490, 1577 nm signal power.
The signal of 1270, 1310 nm inputs to the feeder optical fiber next to
passing through a CWDM coupler of Optical Network Unit (ONU) and a 1:
N power splitter at the Remote Node (RN).

ONU
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Figure 3 system setup
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The GPON downstream transmitter is implemented using Distributed
Feedback laser diode that has power of 3dBm in RZ and NRZ data format
for 1490nm. The XG-PON downstream transmitter is implemented using
electro-absorption modulated laser(EML) of power = 0 dBm in RZ and
NRZ data format for 1577nm with 10 Gb/s transmission. The bandwidth
between the 1260 nm to the 1280 nm for the upstream and the 1575 nm
to the 1580 nm for the downstream transmission of the XGPON is
selected by the FSAN/ITU-T collection, As particular requirements of the
optical transceiver in marketplace and manufacturing. The 5 nm wide is
chosen for downstream window, using this narrow band for cooling laser
supplies and making the wavelength stable. The 20 nm wide is chosen for
upstream window, the uncooling laser sources can be employed and the
ONUs expenses reduced.
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Figure 4 System flowchart
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Semiconductor optical amplifiers SOAs are used for integrating the
downstream transmitter to enhance both 1490nm and 1577nm signal
powers with 15 dBm and 16 dBm saturated power singly to put up high
loss funds for extensive reach. In order to decrease pattern dependent
distortion by reason of the earn dynamics of the SOA, these SOAs are
functioned in a linear organization. For providing distributed Raman gains
to GPON upstream signal band from1300 nm to 1320nm besides to
XGPON upstream signal band from 1260 nm to 1280 nm two pump
signals with wavelength 1240nm of power equal to 520mW and 1206nm of
power equal to 850mW respectively are treated to be combined into the
feeder fiber.

For combining the GPON /XGPON downstream signals and drive
lasers and splitting them a WDM combiner is used. As distinct in the ITU-T
norms the WDM combiner is designed to guarantee the wavelength
organization requirements together with the compatibility for GPON
/IXGPON signals. For improving the transmission performance the WDM
combiner can be used for filtering out the unwanted Raman noise (ASE)
outer the bands of upstream signal. The reference wavelength is 1322 nm
between 1300nm and 1324nm has zero dispersion for bidirectional optical
fiber with dispersion slope equal to 0.086 ps/nm2/km. the attenuation and
fiber nonlinearity (Self phase Modulation and Cross phase Modulation)
effects are taking into account. A combination of 1:32 and 1:64 optical
splitters of cyclic 1:2 WDM Mux/Demux for XGPON and GPON
respectively is employed in the Remote node (RN).

Each ONU have band pass filter having bandwidth equal to 10nm of
frequency 1490nm for GPON downstream and 1577nm for XGPON
downstream. Avalanche Photo detector (APD) is used in the receivers for
signal detection at 1490nm and 1577nm. After that the signals is passed in
two LPFs of 3 dB cut off frequency which is equal to 0.75 Bitrate/4 for
GPON and 0.75 Bitrate for XGPON. In order to renew the electrical signal
3R regenerator is employed that can be tied to the BER analyzer directly.

A group of coupled steady state equations as presented in equation 1
which are based on the standard model of distributed Raman amplification
are used to describe the propagation of the signal, their backscattered
powe[g]s, pump signals and the noise channels in the bidirectional feeder
fiber ™.
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In the above equation, P* (z,v ;) and (,) P (z ,v ) are the optical
powers of the forward- and backward-propagating waves within the
bandwidth Av , respectively. The fiber loss coefficient is represented by a,
whereas the recaptured Rayleigh backscattering is given by the coefficient
y. The Raman gain efficiency is Cr = gr /At , Where gr is the Raman gain
coefficient scaled to the pump wavelength, and A is the effective mode
area. The coefficients h and k are Planck’s constant and Boltzmann’s
constant, respectively, whereas T is the fiber temperature. Both the
spontaneous emission (in the third term) and the absorption (the fifth term)
are included in the model, with the factor of 2 accounting for the two
polarization modes of the fiber. For stimulated emissions, the optical
powers at frequencies from m = 1 to m = i — 1 amplify the signal at
frequency | v, whereas the optical powers at frequencies fromm =i+ 1 to
m = n attenuate the signal. The frequency ratio v ; /v , ensures photon
conservation. The pumps are polarization scrambled. The last two terms
correspond, respectively, to losses and back-reflections at splices, with o
sp being the splice loss, a  the return loss, L, the Iength of each spliced
fiber segment, and L the total length of the feeder fiber
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6. Results and discussion

This paper presents coexistence of XGPON in addition to GPON for
(60 km) propagation. SOAs are used for downstream signals and for
upstream signals Raman amplification is used. In this work the
performance of 10 XGPON system for RZ and NRZ format has been
introduced. In order to evaluation the performance eye diagrams, Q factor
and BER are being taken into consideration for both GPON and XGPON.
Q factor as a function of span for RZ (duty cycle = 0.6 and 0.8) as well as
NRZ downstream signals for GPON as well as XGPON correspondingly
are presented in figures (5, 6). Figure 5 shows a comparison between RZ
and NRZ transmission, RZ format accomplishes better than NRZ since
system receiver and launches the average power are improved by RZ
data format. Peak power limits the effects of SPM and XPM in the
bidirectional fiber.

40

4 RZ0.6GPON
RZ 0.8GPON |4
NRZ GPON

® ¥

Q Factor [dB]
= & 8 &

w
T

0 i L 1 It
40 50 60 70 80 90

Length of fiber [km)]
Figure 5 graphical depiction of the Q value for RZ and NRZ downstream
transmitted data for GPON.

On the other hand a high peak power of RZ pulses produce SPM and
XPM. These RZ pulses can endure compression and achieve finer than
NRZ pulses. In in downstream communication for 0.6 RZ pulses the Q
factor is about 27.4 dB and 12.5 dB at a distance of 50 km and 70 km. for
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NRZ and RZ pulses system performance is the same after 70 km distance
as at higher length there is no impact of these data formats in event
GPON system .

For XGPON system RZ is again better than NRZ format as shown in
figure (6). For XGPON at a distance of 50 km as well as 70 km the Q
factor acquired is 9.6 dB and 8.5 dB correspondingly in the downstream
transmission of 0.6 RZ format. Due to fiber attenuation and nonlinearities
effects Q factor declines with the increase of fiber length. In 0.6 RZ
downstream transmission of XGPON the authentic transmission distance
is up to 85 km, where at BER 107 the lowest tolerable Q factor is 6 dB for
dedicated transmission.

12 I ) L) T T T T
‘ 4 RZ0.6XG-PON

m"r # RZ0.8XG-PON
% NRZ XG-PON

Q Factor [dB]

2 1 1 L 1 1

40 45 50 55 60 65 70 75 80 85 90
Length of fiber [km]

Figure 6 graphical depiction of the Q factor for the RZ and the NRZ
downstream transmitted data for XGPON.

RZ modulation has come to be a widespread answer for the 10 Gb/s
systems because of its smaller bit error rate, average peak power and a
greater Signal to Noise Ratio (SNR) than NRZ modulation. It introduce
better immunity to fiber nonlinearity and less liable to Inter Symbol
Interference  (ISI).RZ modulation typically accomplishes superior
performing contrasted with NRZ.
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The results of Q factor as a function of Length for NRZ as well as RZ
with 0.6 and 0.8 duty cycle of GPON along with XGPON upstream signals
are shown in figures (7, 8) correspondingly. Figure 7 shows the better
option for upstream signals of the system is RZ data format. In 0.6 RZ of
the GPON the transmission distance of the upstream signals can be
carried out larger than 150 km and for XGPON the transmission distance
of the upstream signals can be carried out up to100 km at BER of 10 and
a minimum required of Q factor value which is (6.0 dB) as shown in figure

(8).
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Figure 7 graphical depiction of the Q factor for the NRZ as well as the RZ
upstream transmitted data for GPON.
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Figure 8 graphical depiction of the Q factor for the NRZ as well as the RZ
upstream data transmission for XG-PON.

It has been chosen a single mode optical fiber which is commercially
available as the reference fiber in order to understand the baseline
performing. For 1550nm wavelength pumped signal by a laser source of
1450 nm a peak Raman gain with efficiency equal to 0.39 / (W-km) is used
in the system fiber. The maximal Raman gain after gain scaling for the
1270nm signal has efficiency equal to 0.60/ (W-km) when it is pumped by
source of 1206 nm. The attenuation loss of the system is 0.42 dB/km at
1206 nm and 0.32 dB/km at 1270 nm. Rayleigh backscattering coefficient
at 1270 nmis 1.15 x 10™* km™ . By solving Equation (1) system baseline
performance can be acquired using fiber parameters with no splices.
Figure 9 shows the OSNR with respect to the pumping power which is rise
and reach the maximum at 1150 mW due to effects of nonlinearity at high
pump power. The optimal pump power as shown in figure 9 is nearly 920
mW with OSNR is 19 dB and resolution bandwidth of 0.1 nm.
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Figure 9 the OSNR with the pump power

Attenuation, back reflections and splice losses are added individually to
the system and their performance is assessed for 1270 nm signal. The
attenuation is increased in the first step by 0.01-0.03-0.05 dB/km for both
signal and the pump in order to mimic the feasible environments of a
lossier fiber. For 1270 nm signal the performance can be seen in Figure
10. Attenuation of 0.32 dB/km is included to fiber for comparison at 1270
nm.as shown in figure 10 the OSNR decline as fiber loss raising as a
result additional pumping power is allowed for the system fiber. For 1270
nm the pump power increases for the reference fiber from 920 mW to
1010 mW for 0.35dB/km attenuation fiber. OSNR at 1270 nm are (18, 17,
and 16) dB/0.1 nm for the attenuation of (0.33, 0.35 and 0.37) dB/km
correspondingly.
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Figure 10 the OSNR with the pump power for different fiber losses.

The attenuation of 0.35dBkm is chosen for the system fiber at 1270nm
and splice losses are introduced along the length of the fiber. Segments
which has uniform length that varied from 1 - 5 km is assumed for
consisting the 60 km the feeder optical fiber of the system. Figure 11
shows the OSNR as a function of the segment length for (0.01, 0.03, and
0.05 dB) splices losses. In order to achieve the greatest OSNR the
pumping power is optimized. The pump power drops between 1000 - 1100
mW as depend on the splice loss. The OSNR as noticed decline rapidly
with decreasing segment length or increasing the splices number.
Explicitly, when the length of the segment is 2km the OSNR decline by
(0.2 dB) with 0.01 dB increase of splice loss. The OSNR falls to 16 dB at
each splice with 0.05 dB loss. The results show that it is serious to decline
segments number of the fiber and managing the losses of splices.
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Figure 11 the OSNR with the pump power for different splice loss.

Lastly back reflections impact is examined for upstream signal of 1270
nm as shown in figure 12 with the following parameters: attenuation of
(0.45dB/km at 1206 nm ) and (0.35-dB/km at 1270 nm).the OSNR as a
function of return loss is rises when back reflections have been

considered.
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Figure 12 the OSNR for different values of return loss.
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GPON and XGPON eye diagrams are shown in Figures (13, 14) for
NRZ data format at 60 km of the upstream and the downstream

respectively.
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Fig 13 (a, b) eye diagrams for GPON in NRZ format at 60 km for the
upstream and the downstream respectively.
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Fig 14 (a, b) eye diagrams for XGPON in NRZ format at 65 km for the
upstream and the downstream respectively.
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GPON and XGPON eye diagrams are shown in Figures (15, 16) for 0.6
RZ data format at 60 km of the upstream and the downstream

respectively.
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Fig 15(a, b) eye diagrams for GPON in 0.6 RZ data format at 60 km for the
upstream and the downstream respectively.

BER XG-PON US BER XG-PON DS
Time (bit period) Time (bit period)
9, .05 1 & T e
- T 8 ; ; o
«© =
=l
= u
L § - a_
:
A e -1 e
? it o
£ g
= &
8
a
o
AN [ O

(@) (b)
Fig 16(a, b) eye diagrams for XGPON in 0.6 RZ data format at 60 km for
the upstream and the downstream respectively.
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GPON and XGPON eye diagrams are shown in Figures (17, 18) for 0.8
RZ data format at 60 km of the upstream and the downstream

respectively.
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Fig 17 (a, b) eye diagrams for GPON in 0.8 RZ data format at 60 km for

the upstream and the downstream respectively.
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Fig 18 (a, b) eye diagrams for XGPON in 0.8 RZ data format at 60 km for
the upstream and the downstream respectively.
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7. Conclusion

Modern PONs deployment must be optimized by a number of concerns
need to be considered for the network design which are the optimal using
of the active equipment, cohabitation with the modern technologies and
the flexibility to become easily adapted for future customer distribution and
boosting operational budget because of the interventions of the field, these
concerns will outcome in several design rules.

Based on results that attained by simulation of the coexistent system
presented in this paper, the recommended value of the most significant
parameters of system components were identified for achieving the
optimal performance of these components.

The capability of RZ and NRZ formats signal communication of GPON
and XGPON Raman amplification system has been evaluated on [40 - 90]
km distance transmission. The results show that faithful transmission can
be obtained farther than 65 km for the upstream and the downstream RZ
signals of XGPON system. The RZ modulation format as compared with
the NRZ modulation format of the coexisted system is superior due to its
finer immunity to optical fiber nonlinearities. Furthermore, at higher bit rate
the XGPON performance is declined because of the fiber nonlinearities
effects.

As compared with the reference fiber, the OSNR for the Raman
amplification of XGPON system reduced with the rising of optical fiber
attenuation loss, splice return losses and splice losses which are assumed
for practical optical communication systems. System performance
evaluations is done particularly with parameters as follow 0.35 dB/km
fiber attention, 0.05 dB splice loss and 40 dB return loss for each 2 km
along the 60 km system fiber at 1270 nm. The resultant of link loss budget
is also presented. It is proved that with this specifications as in real
systems the suggested system is able to support 60-km logical reach and
64 ONUs.
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Appendix A
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The Designed System using OPTISYSTEM Software
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