

كلية المنصور الجامعة و الجمعية العراقية للمكتبات والمعلومات

تقيم

ورشة عمل ألكترونية بعنوان

الطباعة الثلاثية الأبعاد بوابة بحث جديدة

للباحث العراقي

الاحد 2020/05/31

08:00 مساءا-بغداد

06:00 مساءا -لنـدن

أ.م. د. سعد حميد عبد

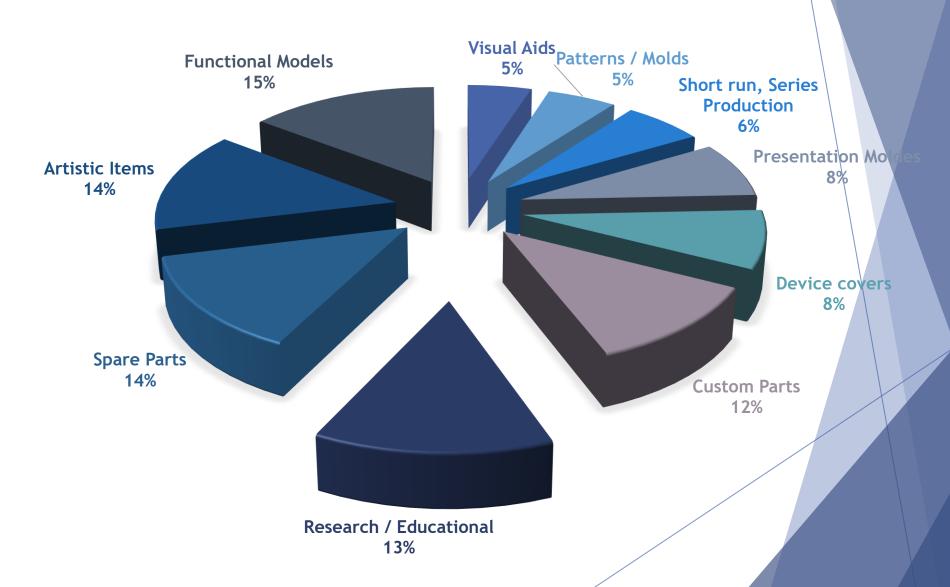
م. د. مي كامل مهدي

قسم علم الحاسوب ونظم المعلومات - كلية المنصور الجامعة

شهادة مشاركة

الكترونية

Join a Meeting


3D Printing as new gateway for Iraqi Researchers

الطباعة ثلاثية الابعاد كبوابة بحث جديدة للباحث العراقي

تقدیم: آ.م.د. سعد حمید عبد
saad.hameed@muc.edu.iq
اعداد ومادة علمیة
م.د. می کامل مهدی

قسم علم الحاسوب ونظم المعلومات كلية المنصور الجامعة

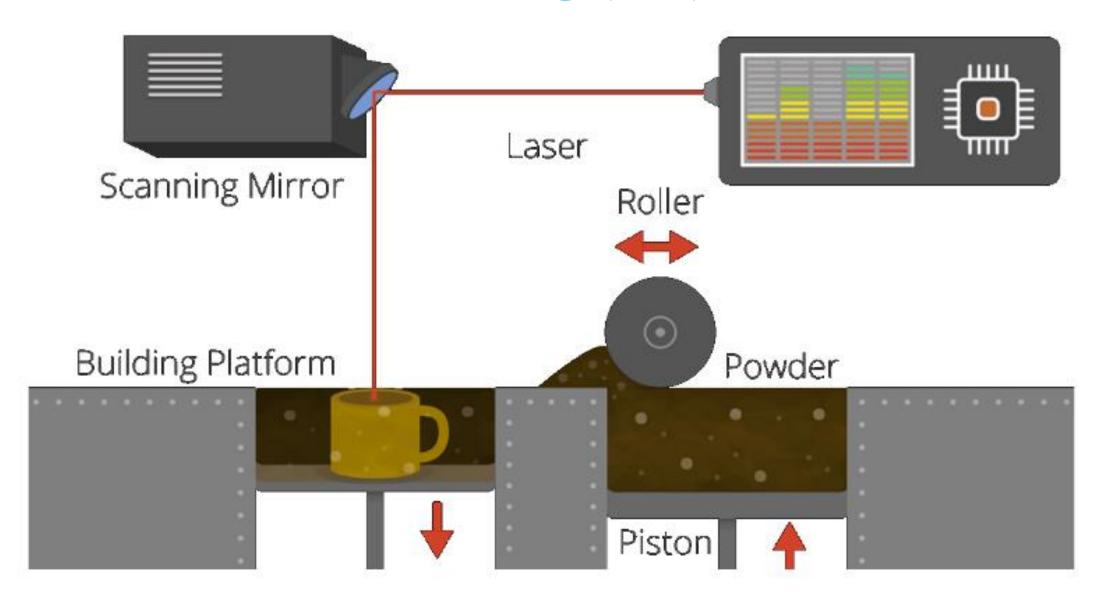
3D Printing Applications

Prototyping technologies

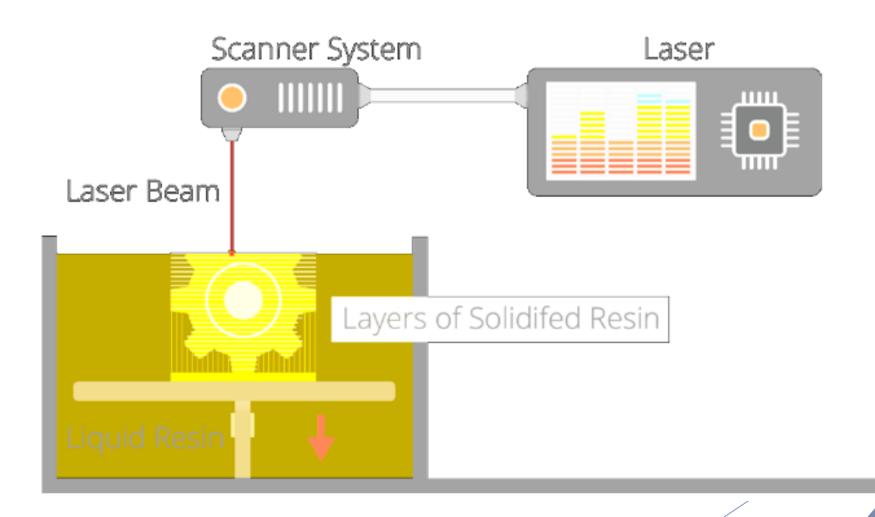
- Additive
 - 3D printing
- Subtractive
 - Milling (CNC & Manual)
 - · Cutting (Laser, Plasma, Router)

What is 3D printing

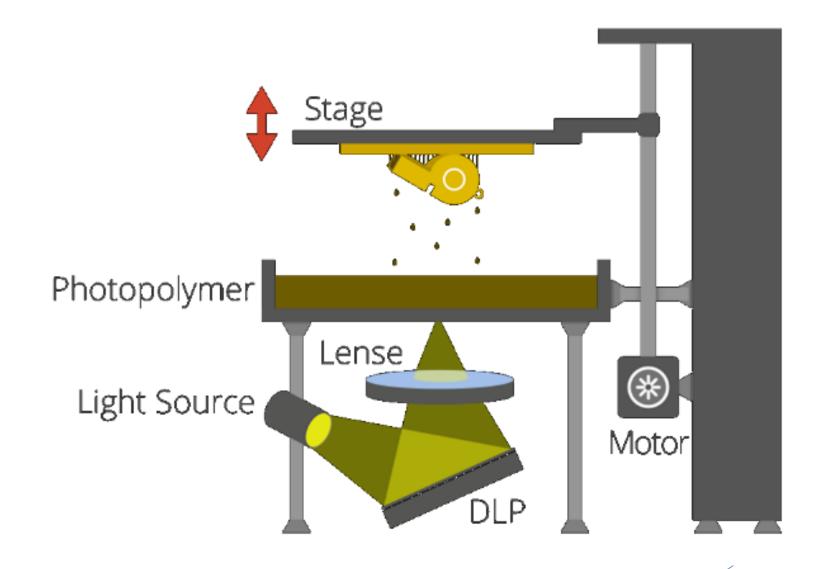
• 3D printing (or additive manufacturing) is a process of making a three-dimensional solid object of virtually any shape from a digital model.

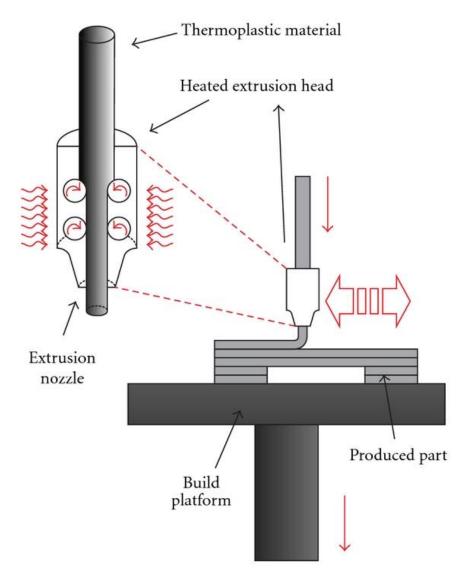

 3D printing is achieved using an additive process, where successive layers of material are laid down in different shapes.

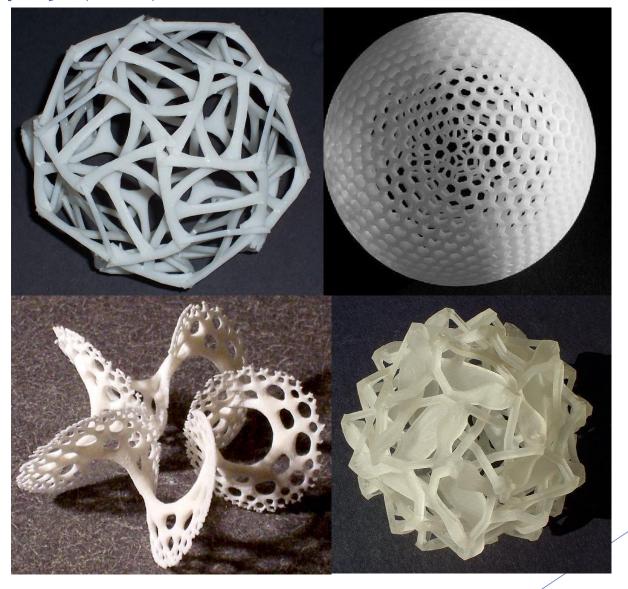
Methods & Technologies


Several ways to realize 3D objects –

- ✓ Selective laser sintering (SLS): uses a high power laser to fuse input materials like plastic, metal, glass, etc. It scans the powdered material layer by layer.
- ✓ Fused deposition modelling (FDM): uses a plastic filament or metal wire as input material to an extrusion nozzle. The nozzle is heated to melt the material and can be moved in both horizontal and vertical directions by CAM. The material hardens immediately after extrusion from the nozzle.
- ✓ Stereolithography (SLA): photopolymerization is used to produce a solid part from a liquid. This technology employs a vat of liquid ultraviolet curable photopolymer resin and an ultraviolet laser to build the object's layers one at a time. UV Laser solidifying the pattern.


Selective laser sintering (SLS)


Selective laser sintering (SLS)


Stereolithography (SLA)

Fused deposition modelling (FDM)

Stereolithography (SLA)

Journals > additive manufacturing			
Materials Today	The International Journal of Advanced	Materials Science and Engineering C	Materials Research Letters
Advanced Materials	Materials & Design	Materials Horizons	Biomaterials Science
Journal of Cleaner Production	Materials Science and Engineering R:	Biofabrication	Journal of Materials Chemistry B
Progress in Materials Science	Advances in Production Engineering	Scripta Materialia	MRS Bulletin
Journal of Materials Science	JOM	Journal of Biomaterials Applications	Materials Letters
Biomedical Materials	Journal of Biomedical Materials Rese	Journal of Alloys and Compounds	
Acta Biomaterialia	Dental Materials	Materials	
Technological Forecasting and Social	Journal of Industrial Engineering and	Procedia	

	Sourcerecord	Source True (Medime-sourced Journals are indicated in Green)	PLINT-122N	E-155N	ACUVE OF		Coverage	Arucie language in					Open Access status, i.e.,			5
	id				Inactive	quality issues		source (three-letter	Cite Score	Cite Score		•	registered in DOAJ and/or		ptember	
		_			_		_	ISO language codes)	_	_			ROAD. Status September	201	19	
1	▼	v	1	▼		<u> </u>		▼	▼	▼	▼	separate tab) 🔻	2019	▼	▼	
2	18500162600	21st Century Music	15343219		Inactive		2002-2011	ENG								J
3	21100404576	2D Materials		20531583	Active		2014-ongoing	ENG			6.77					Jo
4	21100447128	3 Biotech	2190572X	21905738	Active		2015-ongoing	ENG	2.15	2.23	2.61		DOAJ/ROAD Open Access	Articles in press		Jo
5	21100779062	3D Printing and Additive Manufacturing	23297662	23297670	Active		2014-ongoing	ENG	0.80	2.31	3.24					Je
6	21100229836			20926731	Active		2010-ongoing	ENG		1.02	1.67			Articles in Press		Je
7	19700200922	3L: Language, Linguistics, Literature	01285157		Active		2008-ongoing	ENG	0.38	0.41	0.61		DOAJ/ROAD Open Access			J
8	145295	40R	16194500	16142411	Active		2003-ongoing	ENG	1.83	1.47	2.33			Articles in Press		J
9	16400154734	A + U-Architecture and Urbanism	03899160		Active		2002-ongoing	JPN, ENG	0.01	0.02	0.01					J
10	5700161051	A Contrario	16607880		Active		2009-ongoing, 2003-2007	FRE, ENG	0.00	0.05	0.04					Jo
11	21100399164	A&A case reports	23257237		Inactive		2015-2017	ENG	0.53	0.66		Medline-sourced				Jo
	21100881366			25753126	Active		2018-ongoing	ENG			0.64	Medline-sourced				Jo
		A.M.A. American Journal of Diseases of Children	00968994		Inactive		1945-1955									Je
14	19400157806	A.M.A. archives of dermatology	00965359		Inactive		1955-1959									Je
15	19600162081	A.M.A. Archives of Dermatology and Syphilology	00965979		Inactive		1950-1954									J
16	19400157807	A.M.A. archives of industrial health	05673933		Inactive		1954-1960									J
17	19600162082	A.M.A. Archives of Industrial Hygiene and Occupational Medicine	00966703		Inactive		1950-1954									Jo
18	19400157808	A.M.A. archives of internal medicine	08882479		Inactive		1950-1959									Jo
19	19400158171	A.M.A. archives of neurology	03758540		Inactive		1959-1960									Je
20	19400157809	A.M.A. archives of neurology and psychiatry	00966886		Inactive		1950-1959									Jo

Example of 3D Printing Journal

3D Printing and Additive Manufacturing

United States - IIII SIR Ranking of United States

Subject Area and Category

Engineering

Industrial and Manufacturing Engineering

Materials Science

Materials Science (miscellaneous)

Mary Ann Liebert Inc.

Publication type

Journals

23297662, 23297670

Coverage

2014-ongoing

Scope 3D Printing and Additive Manufacturing is the only peer-reviewed journal on the rapidly moving field of 3D printing and related technologies. The Journal provides comprehensive coverage of academic research and industrial and commercial developments that have applications in medicine, education, food, and architecture. It also explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales. 3D Printing and Additive Manufacturing coverage includes: Novel additive manufacturing processes and techniques, Improvements of established methods and materials, Modeling and simulation of additive manufacturing processes. New materials, meta-materials, digital materials, lattices, and multi-material printing, Active and electronic materials fabrication, Hybrid additive and conventional manufacturing, Medical applications of 3D printing and bio-printing, Application of 3D printing in education, Advanced methods in product lifecycle design, testing and adaptation, Material mechanical properties, solidification processes for powders, liquids, and solids, Rapid tooling, remote manufacturing, Economic and social, and humanitarian considerations of democratizing manufacturing, Advances in personal 3D Printers and consumer adoption, Mass customization, new business models, Material performance standards and data exchange formats.

Homepage

How to publish in this journal

Contact

H Index

Example of 3D Printing Journal

Additive Manufacturing

Country Netherlands - III SIR Ranking of Netherlands

Subject Area and Engineering

Biomedical Engineering Engineering (miscellaneous) Industrial and Manufacturing Engineering

Materials Science

Materials Science (miscellaneous)

Publisher Elsevier BV

Publication type | Journals

Category

ISSN 22148604

Coverage 2014-ongoing

2014 oligoli

Additive Manufacturing is the peer-reviewed journal that provides academia and world-leading industry with high quality research papers and reviews in additive manufacturing. The journal aims to acknowledge the innovative nature of additive manufacturing and its broad applications to outline the current and future developments in the field.

Homepage

How to publish in this journal

Contact

Join the conversation about this journal

31

H Index

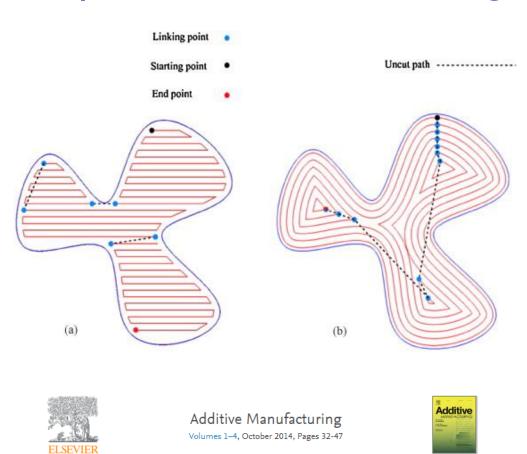
Journal Metrics

> CiteScore: 9.62 ①

Impact Factor: 7.173 ①

Source Normalized Impact per Paper

(SNIP): 3.085 ①

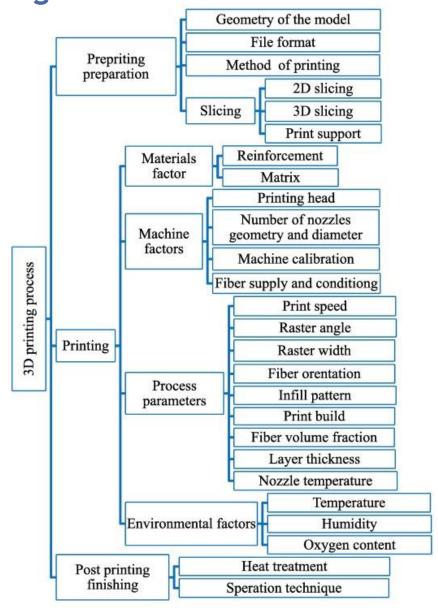

SCImago Journal Rank (SJR): 2.591

(

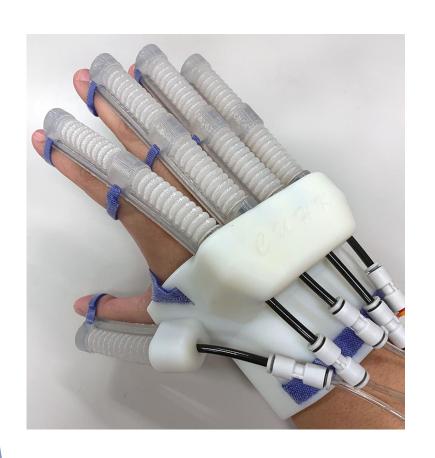
Applicable Research Fields (EX)

- 1- Computer Science, Software Engineering And Information Technology
- 2- Computer Engineering & Robotics
- 3- Mechanical Engineering
- 4- Electrical And Electronic Engineering
- 5- Medical And Dental
- 6- Chemical Engineering
- 7- Physics
- 8- Civil Engineering, Structural Engineering and Construction
- 9- Metallurgy
- 10- Aerospace
- 11- Mathematics
- 12- Art

1- Computer Science, Software Engineering And Information Technology



Optimization of tool-path generation for material extrusion-based additive manufacturing technology *

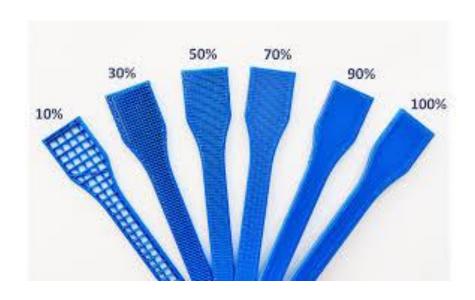

Yu-an Jin $^{a,\,b}$, Yong He $^{a,\,b}$ $\stackrel{\rm deg}{\sim}$, Jian-zhong Fu $^{a,\,b}$, Wen-feng Gan $^{a,\,b}$, Zhi-wei Lin $^{a,\,b}$

⊞ Show more

https://doi.org/10.1016/j.addma.2014.08.004 Get rights and content

2- Computer Engineering & Robotics

Volume 39, October 2015, Pages 55-67


Anaglyph video smell presentation using microporous piezoelectric film olfactory display

Saad Hameed Abid a, b ≥ ™, Zhiyong Li a, Renfa Li a, Jumana Waleed c

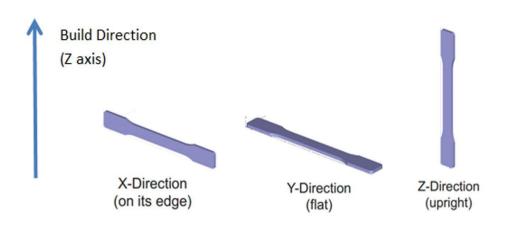
⊞ Show more

https://doi.org/10.1016/j.displa.2015.08.004

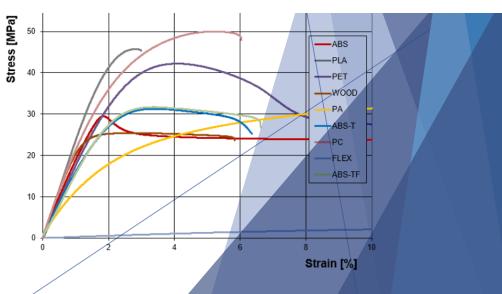
3- Mechanical Engineering

Composites Part B: Engineering

Volume 188, 1 May 2020, 107894

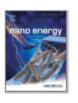


Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses


Tianyun Yao a, b, Juan Ye a, b, Zichen Deng a, b a a, Kai Zhang a, b a a, Yongbin Ma a, b, Huajiang Ouyang c

⊞ Show more

https://doi.org/10.1016/j.compositesb.2020.107894

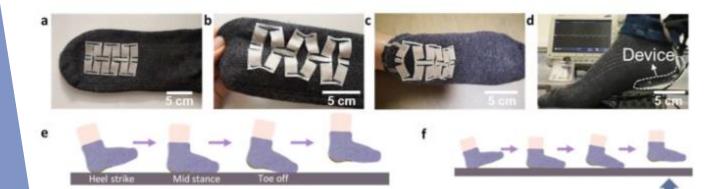


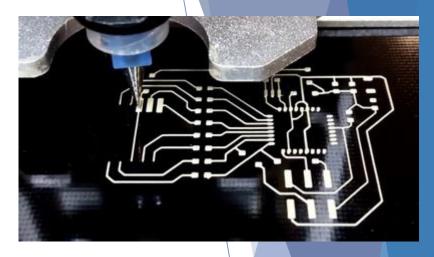
4- Electrical And Electronic Engineering

Nano Energy

Volume 72, June 2020, 104676

All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure

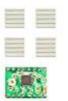

Xinran Zhou ^{a, b}, Kaushik Parida ^a, Oded Halevi ^{a, b, c}, Yizhi Liu ^d, Jiaqing Xiong ^a, Shlomo Magdassi ^{b, c} ^a, Pooi See Lee ^{a, b} ^a


https://doi.org/10.1016/j.nanoen.2020.104676

Under a Creative Commons license

Get rights and content

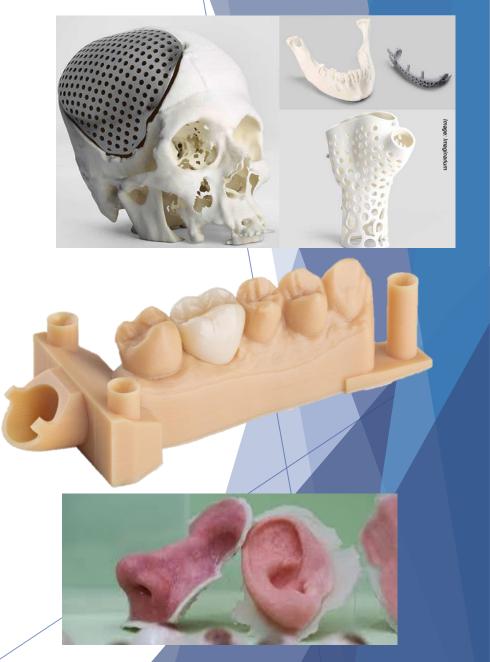
open access



5- Medical And Dental

Journal of Surgical Education

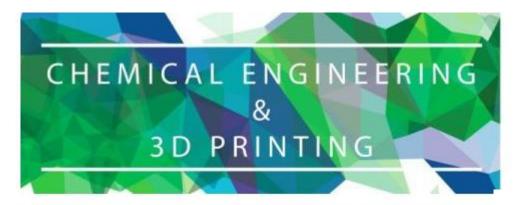
Available online 6 April 2020 In Press, Corrected Proof (?)


ORIGINAL REPORTS

3D Printing Technology Improves Medical Interns' Understanding of Anatomy of Gastrocolic Trunk

Yigang Chen *, ¹, Chunxiang Qian †, ¹, Ruizhi Shen ‡, Danping Wu ∮, Linjie Bian ∮, Huiheng Qu *, Xinqi Fan *, Zhequn Liu ∥, Yang Li △†⊠, Jiazeng Xia △*⊠

⊞ Show more


https://doi.org/10.1016/j.jsurg.2020.02.031

6- Chemical Engineering

			20				11	*	600	C		7		
		ABS	Flexible	PLA	HIPS	PETG	Nylon	Carbon Fiber Filled	ASA	Polycarbonate	Polypropylene	Metal Filled	Wood Filled	PVA
		Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More	Learn More
Compare Selected														
Ultimate Strength	?	40 MPa	26 - 43 MPa	65 MPa	32 MPa	53 MPa	40 - 85 MPa	45 - 48 MPa	55 MPa	72 MPa	32 MPa	20 - 30 MPa	46 MPa	78 MPa
Stiffness	?	5/10	1/10	7.5/10	10/10	5/10	5/10	10/10	5/10	6/10	4/10	10/10	8/10	3/10
Durability	?	8/10	9/10	4/10	7/10	8/10	10/10	3/10	10/10	10/10	9/10	4/10	3/10	7/10
Maximum Service Temperature	?	98 °C	60 - 74 °€	52 °C	100 °⊂	73°⊂	80 - 95 °€	52 ℃	95°⊂	121°C	100 °C	52 °⊂	52 °⊂	75 ℃
Coefficient of Thermal Expansion	?	90 μm/m-°C	157 µm/m-°C	68 µm/m-°C	80 µm/m-°C	60 µm/m-°C	95 μm/m-°C	57.5 μm/m-°C	98 µm/m-°C	69 µm/m-°C	150 µm/m-°C	33.75 µm/m-°C	30.5 µm/m-°C	85 µm/m-°C
Density	?	1.04 g/cm ³	1.19 - 1.23 g/cm ³	1.24 g/cm ³	1.03 - 1.04 g/cm ³	1,23 g/cm ³	1.06 - 1.14 g/cm ³	1.3 g/cm ³	1.07 g/cm ³	1.2 g/cm ³	0.9 g/cm ³	2 - 4 g/cm ³	1.15 - 1.25 g/cm ³	1.23 g/cm ³
Price (per kg)	?	\$10 - \$40	\$30 - \$70	\$10 - \$40	\$24 - \$32	\$20 - \$60	\$25 - \$65	\$30 - \$80	\$38 - \$40	\$40 - \$75	\$60 - \$120	\$50 - \$120	\$25 - \$55	\$40 - \$110
Printability	?	8/10	6/10	9/10	6/10	9/10	8/10	8/10	7/10	6/10	4/10	7/10	8/10	5/10
Extruder Temperature	?	220 - 250 ℃	225 - 245 ℃	190 - 220 =⊂	230 - 245 °C	230 - 250 °⊂	220 - 270 ℃	200 - 230 °€	235 - 255 °€	260 - 310 °€	220 - 250 ℃	190 - 220 °C	190 - 220 ℃	185 - 200 °C
Bed temperature	?	95 - 110 ℃	45 - 60 °C	45 - 60 °C	100 - 115 °C	75 - 90 °⊂	70 - 90 °C	45 - 60 °C	90 - 110 °⊂	80 - 120 ℃	85 - 100°c	45 - 60 °⊂	45 - 60 °C	45 - 60 °C
Heated Bed	?	Required	Optional	Optional	Required	Required	Required	Optional	Required	Required	Required	Optional	Optional	Required
Recommended Build Surfaces	?	Kapton Tape, ABS Slurry	PEI, Painter's Tape	Painter's Tape, Glue Stick, Glass Plate, PEI	Glass Plate, Glue Stick, Kapton Tape	Glue Stick, Painter's Tape	Glue Stick, PEI	Painter's Tape, Glue Stick, Glass Plate, PEI	Glue Stick, PEI	PEI, Commercial Adhesive, Glue Stick	Packing Tape, Polypropylene Sheet	Painter's Tape, Glue Stick, PEI	Painter's Tape, Glue Stick, PEI	PEl, Painter's Tape
Other Hardware Requirements	?	Heated Bed, Enclosure Recommended	Part Cooling Fan	Part Cooling Fan	Heated Bed, Enclosure Recommended	Heated Bed, Part Cooling Fan	Heated Bed, Enclosure Recommended, May Require All Metal Hotend	Part Cooling Fan	Heated Bed	Heated Bed, Enclosure Recommended, All Metal Hotend	Heated Bed, Enclosure Recommended, Part Cooling Fan	Wear Resistant or Stainless Steel Nozzle, Part Cooling Fan	Part Cooling Fan	Heated Bed, Part Cooling Fan

6- Chemical Engineering

1st European Forum on New Technologies - Chemical Engineering and 3D Printing

7 September 2018, Paris, France

Journal of the European Ceramic Society

Volume 40, Issue 8, July 2020, Pages 2834-2854

Original Article

Synthesis and properties of macroporous SiC ceramics synthesized by 3D printing and chemical vapor infiltration/deposition

A. Baux ^a, A. Goillot ^a, S. Jacques ^a, C. Heisel ^b, D. Rochais ^b, L. Charpentier ^c, P. David ^b, T. Piquero ^b, T. Chartier ^d, G. Chollon ^a \nearrow \boxtimes

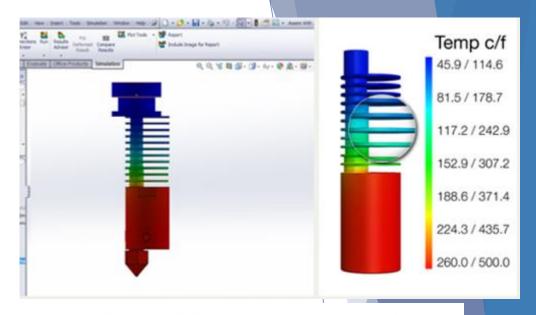
⊞ Show more

https://doi.org/10.1016/j.jeurceramsoc.2020.03.001

7- Physics

Materials Science and Engineering: C

Volume 101, August 2019, Pages 15-26



Engineering a multifunctional 3D-printed PLAcollagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration

Victor Martin ^a, Isabel A. Ribeiro ^a, Marta M. Alves ^b, Lídia Gonçalves ^a, Ricardo A. Claudio ^{c, d}, Liliana Grenho ^{e, f}, Maria H. Fernandes e, f, Pedro Gomes e, f, Catarina F. Santos b, c ≥ 1 , Ana F. Bettencourt a ≥ 1 .

https://doi.org/10.1016/j.msec.2019.03.056

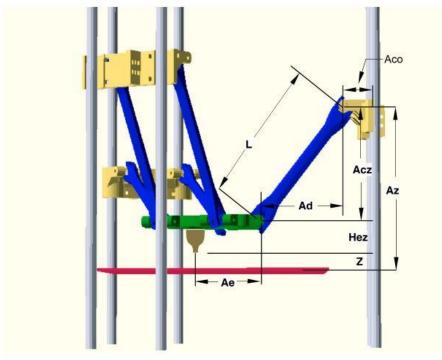
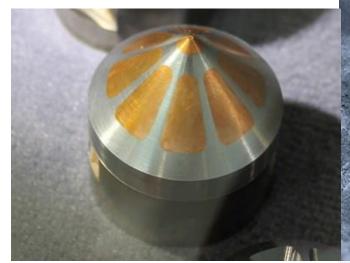


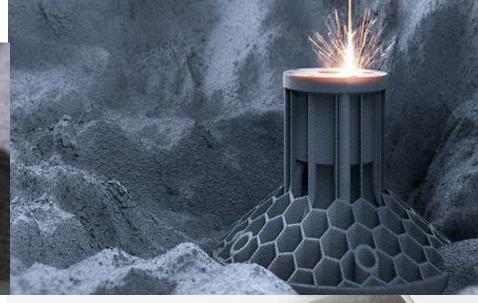
Fig. 4

8- Civil Engineering, Structural Engineering and Construction

Construction and Building Materials

Volume 179, 10 August 2018, Pages 125-137




3D-printed steel reinforcement for digital concrete construction – Manufacture, mechanical properties and bond behaviour

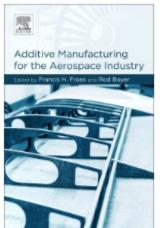
Viktor Mechtcherine ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, Jasmin Grafe ^a, Venkatesh N. Nerella ^a, Erik Spaniol ^b, Martin Hertel ^b, Uwe Füssel ^b

⊞ Show more

9- Metallurgy

In Press, Corrected Proof (?)

Atomization processes of metal powders for 3D printing


Kazybek Kassym, Asma Perveen 🖇

⊞ Show more

https://doi.org/10.1016/j.matpr.2020.02.364

10- Aerospace

Additive Manufacturing for the

Aerospace Industry

1st Edition

Editors: Francis Froes, Rodney Boyer

Paperback ISBN: 9780128140628 eBook ISBN: 9780128140635

Imprint: Elsevier

Published Date: 18th February 2019

View on ScienceDirect >

Journal Metrics

> CiteScore: 9.62 ①

Impact Factor: 7.173 ①

Source Normalized Impact per Paper (SNIP): 3.085 $^{\odot}$

SCImago Journal Rank (SJR): 2.591

Your Research Data

> Share your research data

This story uses material from GE Additive, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier.

Additive Industries secures €14 million funding

27 May 2020

3D metal printing equipment manufacturer Additive Industries has received a €14 million investment from its shareholder Highlands Beheer.

11-Mathematics

Additive Manufacturing

Volume 33, May 2020, 101175

Additive Manufacturing

Available online 24 May 2020, 101319

In Press, Journal Pre-proof 1

Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process

Zhe Sun, Wei Guo, Lin Li 🎗 🖾

Show more >

https://doi.org/10.1016/j.addma.2020.101175

Get rights and content

Embedded product authentication codes in additive manufactured parts: Imaging and image processing for improved scan ability

Fei Chen ^a, Jaime Zabalza ^b, Paul Murray ^b, Stephen Marshall ^b, Jian Yu ^c, Nikhil Gupta ^a A 🖾

Show more 🗸

https://doi.org/10.1016/j.addma.2020.101319

12-Art

The use of 3D printing technologies in art casting

Aleksandra Mikulíková

Silesian University of Technology https://orcid.org/0000-0001-9259-128X

Marek Wyleżoł

Silesian University of Technology https://orcid.org/0000-0001-6324-510X

DOI: https://doi.org/10.17814/mechanik.2020.5-6.12

Keywords: 3D printing, lost-wax method, art casting

Abstract

