Grid Computing

Concept, infrastructure and implementation

1 Introduction

1.1 Definition

Grid is a type of parallel and distributed system that enables the sharing,
selection, and aggregation of geographically distributed "autonomous" resources
dynamically at runtime depending on their availability, capability, performance, cost,
and users' quality-of-service requirements. The goal of Grid Computing is to create
the illusion of a simple yet large and powerful self managing virtual computer out of a
large collection of connected heterogeneous systems sharing various combinations of
resources. [1]

1.2 Reasons for Grid Computing

Why do we need computational grids? Computational approaches to problem
solving have proven their worth in almost every field of human endeavor. But, there
are certainly challenging problems that exceed computer's ability to solve them,
therefore, one important factor is that the average computing environment remains
inadequate for such computationally sophisticated purposes. While today's PC is
faster than the Cray supercomputer of 10 years ago, it is still far from adequate for
predicting the outcome of complex actions or selecting from among many choices.
That, after all, is why super computing environments have continued to evolve. [2]

2 Clusters and Grids

Cluster, or network of workstations is developed earlier than Grids. It's a
collection of computers connected by a high-speed local area network and designed to
be used as an integrated computing or data processing resource. A cluster, like an
individual end system, is a homogeneous entity - its constituent systems differ
primarily in configuration, not basic architecture and is controlled by a single
administrative entity who has complete control over each end system.

So, why we still need Grids? Is Cluster already enough?

Grid is definitely necessary, since it has far more functionalities and benefits than
Cluster:
€ Exploiting underutilized resources

An organization may have occasional unexpected peaks of activity that demand
more resources. 1f the applications are grid enabled, they can be moved to
underutilized machines during such peaks. In fact, some grid implementations can
migrate partiaily compicted jobs. In goneral, o grid can provide a consisient way 10
balance the loads on a wider federation of resources. This applies to CPU, storage,
and many other kinds of resources that may be available on a grid.

& Parallel CPU Capacity

The potential for massive parallel CPU capacity is one of the most attractive
features of a grid. The common aitribute among such uses is that the applications have
been written to use algorithms that can be partitioned into independently running parts.
A CPU intensive grid application can be thought of as many smaller "subjobs”, each
executing on a different machine in the grid.
€ Collaboration

Another important grid computing contribution is to enable and simplify
collaboration among a wider audience. In the past, distributed computing promised
this collaboration and achieved it to some extent Grid computing takes these
capabilities to an even wider audience, while offering important standards that enable
very heterogeneous systems to work together to form the image of a large virtual
computing system offering a variety of virtual resources.
€ Reliability

High-end conventional computing systems use expensive hardware to increase
reliability. In grid systems, everything is different. They can be relatively inexpensive
and geographically dispersed. Thus, if there is a power or other kind of failure at one

S S WUOUL Ll

location, the other parts of the grid are not likely to be affected. In critical, real-time

situations, multiple copies of the important jobs can be run on different machines
throughout the grid. Their results can be checked for any kind of inconsistency, such
as computer failures. data corruption, or tampering.
¢ Management

The goal to virtualize the resources on the grid and more uniformly handle
heterogeneous systems will create new opportunities to better manage a larger, more
disperse IT infrastructure. It will be easier to visualize capacity and utilization,
making it easier for IT departments to control expenditures for computing resources
over a larger organization.

3 Grid Architecture

s atakdia - P ¢ " = 5 :
e establishment, management, and exploitation of dynamic
cross-ordanizational virtual organization snaring relationships require new technoiogy.

structure our discussion of this technology in terms of a Grid Architecture that

=
(¢
v
L
-

identifies fundamental system components, specifies the purpose and function of
these components, and indicates how these components interact with one another.

In defining a Grid architecture, we start from the perspective that effective virtual
organization operation requires that we be able to establish sharing relationships
among any potential participants.

Interoperability is thus the central issue to be addressed. In a networked
environment, interoperability means common protocols. Hence, our Grid architecture
is first and foremost a protocol architecture, with protocols defining the basic
mechanisms by which virtual organization users and resources negotiate, establish,
manage, and exploit sharing relationships.

3.2 Grid Architecture Description

Our goal in describing our Grid architecture is not to provide a complete
enumeration of all required protocols (and services, APIs, and SDKs) but rather to
identify requirements for general classes of component. The result is an extensible,
open architectural structure within which can be placed solutions to key virtual
organization requirements. Our architecture and the subsequent discussion organize
components into layers, as shown in Figure 1.

Appliction

v l, =

bie |
B : I
— =
5 2
= <
- Resource —
‘6 o
&)
8 O
8 g
a Comnedtivity j‘_:
T T}
5 _ :
Falric b=
e

Figure 1: The layered Grid architecture and its relationship to the Internet protocol architecture.
Because the Internet protocol architecture extends from network to application, there is a mapping from

Grid layers into Internet layers.

3.2.1 Fabric: Interfaces to Local Control

The Grid Fabric layer provides the resources to which shared access is mediated
by Grid protocols. Fabric components implement the local, resource-specific
operations that occur on specific resources (whether physical or logical) as a result of

sharing operations at higher levels. There is thus a tight and subtle interdependence
between the functions implemented at the Fabric level, on the one hand, and the
sharing operations supported, on the other. Richer Fabric functionality enables more
sophistivaicd sharing operutivns; 4l the Satc e, if we place few demands on Faonc
elements, then deployment of Grid infrastructure is simplified. For example, resource
level support for advance reservations makes it possible for higher-level services 1o
aggregate (coschedule) resources in interesting ways that would otherwise be
impossible to achieve. There are different mechanisms for different resources, such as
computational resources, storage resources, network resources, code repositories and
catalogs.[3]

3.2.2 Connectivity: Communicating Easily and Securely

The Connectivity layer defines core communication and authentication protocols
required for Grid-specific network transactions. Communication protocols enabie the
exchange of data between Fabric layer resources. Authentication protocols build on
communication services to provide cryptographically secure mechanisms for
verifying the identity of users and resources.

Communication requirements include transport, routing, and naming. While
alternatives certainly exist, we assume here that these protocols are drawn from the
TCP/IP protocol stack: specifically, the Internet (IP and ICMP), transport (TCP, UDP),
and application (DNS, OSPF, RSVP, etc.) layers of the Internet layered protocol
architecture. This is not to say that in the future, Grid communications will not
demand new protocols that take into account particular types of network dynamics.

With respect to security aspects of the Connectivity layer, we observe that the
complexity of the security problem makes it important that any solutions be based on
existing standards whenever possible. As with communication, many of the security
standards developed within the context of the Internet protocol suite are applicable.

3.2.3 Resource: Sharing Single Resources

—

he Resource layer builds on Connectivity layer communication and
authentication protocols to define protocols (and APIs and SDKs) for the secure
negotiation, initiation, monitoring, control, accounting, and payment of sharing
operations on individual resources. Resource layer implementations of these protocols
call Fabric layer functions to access and control local resources. Resource layer
protocols are concerned entirely with individual resources and hence ignore issues of
global state and atomic actions across distributed collections; such issues are the
concern of the Collective layer discussed next.

While many such protocols can be imagined, the Resource (and Connectivity)

protocol layers form the neck of our hourglass model, and as such should be limited to
a
i

o

small and focused set. These protocols must be chosen so as to capture the
fundamental mechanisms of sharing across many different resource types (for

example, different local resource management systems), while not overly constraining
the types or performance of higher-level protocols that may be developed.

3.2.4 Collective: Coordinating Multiple Resources

While the Resource layer is focused on interactions with a single resource, the
next layer in the architecture contains protocols and services (and APIs and SDKs)
that are not associated with any one specific resource but rather are global in nature
and capture interactions across collections of resources. For this reason, we refer to
the next layer of the architecture as the Collective layer, as Figure 2 illustrated.
Because Collective components build on the narrow Resource and Connectivity layer
“neck” in the protocol hourglass, they can implement a wide variety of sharing
behaviors without placing new requirements on the resources being shared. (4]

.
Co-re

Collective Layer

Co-Allocation API & SDK
Resource Mgmt API & SDK

Resource Layer Resource Mgmt IProtocol

Fabric Layer

Figure 2: Collective and Resource layer protocols, services, APIs, and SDKS can be combined in a
variety of ways to deliver functionality to applications.

3.2.5 Applications

The final layer in our Grid architecture comprises the user applications that operate
within a virtual organization environment. Figure 3 illustrates an application
programmer’s view of Grid architecture. Applications are constructed in terms of, and
by calling upon, services defined at any layer. At each layer, we have well-defined
protocols that provide access to some useful service: resource management, data
access, resource discovery, and so forth. At each layer, APIs may also be defined
whose implementation (ideally provided by third-party SDKs) exchaiige protocol
messages with the appropriate service(s) to perform desired actions. [5]

Applications
| | Languages & Frameworks

Key: | | e .
| API/SDK | | Collective APIs & SDKs
H Collective Service LProtocols

i

, Resource APIs & SDKs i
Resource Service gProtocols

'[Connectivity APIs ;
Connectivity : Protocols

Figure 3: APIs arc implemented by software development kits (SDKs), which in turn use Grid
protocols to interact with network services that provide capabilities to the end user. Higher level SDKs
can provide functionality that is not directly mapped to a specific protocol, but may combine protocol

operations with calls to additional APIs as well as implement local functionality. Solid lines represent a
direct call; dash lines protocol interactions.

4 Grid Implementation

To implement a Grid software, one must be ware of the five architecture levels
described above. As it's not too reasonable to describe abstract concepts that how can
one implement a Grid software without practice, we use one application to illustrate
how Grid architecture be built in practice - UNICORE

UNICORE - Uniform Interface to Computing Resources - system was initiated in
1997, to enable German supercomputer centers to provide their users with a seamless,
secure, and intuitive access to their heterogeneous computing resources. Like in the
case of the Globus Toolkit [6] UNICORE was started before “Grid Computing”
became the accepted new paradigm for distributed computing.

Figure 4 shows the layered Grid architecture of UNICORE consisting of user,
server and target system tier [7]. The implementation of all components shown is
realized in Java. UNICORE meets the Open Grid Services Architecture (OGSA)

[8] concept following the paradigm of *Everything being a Service’. Indeed, an

analysis has shown that the basic ideas behind UNICORE already realizes this
paradigm [9,10].

Client

Memirmek S ORETT over S
Multsito jobs

Authoniication - UL oner 551 Gateway I

Figure 4: The UNICORE architecture.
In the implementation, all the Grid services mentioned above is concerned, We
can find most of characters that a Grid environment should have from it, as following,

Collective (application-specific) Distributed data archiver, checkpointing,
job management, failover, staging
Collective (generic) Resource discovery, resource brokering,

system monitoring, community
authorization, certificate revocation

Resource Access to computation, access to data,
access to information about system
structure, state, performance

Connectivity Communication(IP), service
discovery(DNS), authentication,
authorization.

Fabric Storage system, computers, networks,
catalogs

Table 1: The Grid services used to construct UNICORE

UNICORE has achieved great success. It is quite widely used, a most famous
example is EUROGRID project[11]. EUROGRID is a Grid network of leading
European High Performance Supercomputing centers was established. Based on the
UNICORE technology application-specific Grids were integrated, operated and
demonstrated:

— Bio-Grid for biomolecular science
— Meteo-Grid for localized weather prediction
— CAE-Grid for coupling applications

— HPC-Grid for general HPC end-users

8 Conclusion: A Whole New World

In this paper, we have demonstrated the great advantages of using Grid
Computing, and have given a glimpse of its even more vast potentials. This is just the
beginning, however, and there is also a lot of work still to be done. While UNICORE
demonstrates the basic ideas, many details still need to be worked out before we can
implement the larger ideas. Possible next steps include, among others: (1)
investigating the use of more practical protocols allow clients to find the services that
they need, and allow service providers to find other web services that they can
subcontract,(2) investigating the performance problem and either eliminating the
overhead, if possible, or otherwise, determining the granularity required to make the
effect of this overhead acceptably small, (3)finding good protocols for security and
authentication , and (4) developing protocols to address the many other issues in grid
computing. [12,13]

In the end, we believe that it will be worth it for grid computing researchers to
start working together on a long term project to implement a Grid framework based
on web services and protocols. Through such a project we can not only bring the
advantages of web services into grid computing, but also share the results of grid
computing research with the “real world” web service community as well. Thus, we
can start a merging of efforts, that can eventually lead to a whole new world where
the Grid is a part of the everyday life of all computer users.[14,15]
puting Info Centre.

