
LINKED LIST

Al-Mansour University College

CSIS Department 2nd class 2020

Dr. May Kamil

Linked List:

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at a

contiguous location; the elements are linked using pointers.

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays have the following limitations.

1) The size of the arrays is fixed: So we must know the upper limit on the number of elements in advance.

Also, generally, the allocated memory is equal to the upper limit irrespective of the usage.

2) Inserting a new element in an array of elements is expensive because the room has to be created for the

new elements and to create room existing elements have to be shifted.

For example, in a system, if we maintain a sorted list of IDs in an array id[].

id[] = [1000, 1010, 1050, 2000, 2040].

And if we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after

1000 (excluding 1000).

Deletion is also expensive with arrays until unless some special techniques are used. For example, to delete 1010

in id[], everything after 1010 has to be moved.

Advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

Drawbacks:

1) Random access is not allowed. We have to access elements sequentially starting from the first node. So we

cannot do binary search with linked lists efficiently with its default implementation. Read about it .

2) Extra memory space for a pointer is required with each element of the list.

3) Not cache friendly. Since array elements are contiguous locations, there is locality of reference which is not

there in case of linked lists.

A node in linked list can be represented using structures. Below is an example of a linked list node with

integer data.

Example : Let us create a linked list with the following functions:

1- Clear the linked list.

2-Add a node to the end of linked list.

3- Add a node to the beginning of linked list.

4- Print the data of linked list.

5- Find the sum of linked list elements.

6- Delete a node from linked list.

2-Add a node to the end of linked list.

node * inend(node *first, int x)

{

node *p,*ptr;

if(first ==NULL)

{

p=new(node);

p->data=x;

p->next=NULL;

first=p;

}

else

{

p=new(node);

p->data=x;

p->next=NULL;

ptr=first;

while(ptr->next !=NULL)

ptr=ptr->next;

ptr->next=p;

}

return(first);

}

include <iostream.h>

include <stdio.h>

include <conio.h>

struct node

{

int data;

struct node *next;

} ;

1- Clear the linked list function .

node * clear_list(node *p)

{

p=NULL;

return(p);

}

3- Add a node to the beginning of linked list.

node * inbegin(struct node *first, int x)

{

struct node *p;

if(first ==NULL)

{

p=new(node);

p->data=x;

p->next=NULL;

first=p;

}

else

{

p=new(node);

p->data=x;

p->next=first;

first=p;

}

return(first);

}

4- Print the data of linked list.

void print(node *first)

{

node *q;

if (first ==NULL)

cout<<"Empty link list";

q=first;

while(q!=NULL)

{

cout<<q->data<<endl;getch();

q=q->next;

}

}

5- Find the sum of linked list elements.

int sum(node *ptr)

{

int sum1=0;

node * p = ptr;

while (p != NULL)

{

sum1 = sum1+ ptr->data;

p=p-> next;

}

return (sum1);

}

6- Delete a node from linked list.

node * deletnod(node *first, int x)

{

node * ptr,*prev;

if (first == NULL)

cout<<" Empty link list";

else

{ if(x== first->data)

{ ptr=first; first=first->next; delete(ptr); }

else

{

ptr=first;

while(ptr!=NULL && ptr->data !=x)

{ prev=ptr; ptr=ptr->next; }

if (ptr!= NULL)

{ prev->next= ptr->next;

delete ptr;

}

else

cout <<" Not found";

}

}

return (first);

}

