Database

|

4.3.2 Special Relational Operations:-

Selection:

(Selection, projection, join)

The algebraic selection operator{ not o be confused with SQL SELECT)

vields a "horizontal" subset of a given relation-that is, that subset of

tuples within the given relation for which a specified predicate is

satisfied. The predicate is expressed as a Boolean combination of terms,

each term being a simple comparison that and be establishes as true or

false for a given tuple by inspecting that tuple in isolation.

. Example:-

1- S WHERE City=‘London'::_§ :

2- P WHERE Weight < 14

P#
= P1

3- SP WHERE S#='S1" AND P#="pP1

Fig. (4.4) Three sample selections.

o W

S# | Sname i status | City
S1 |Smith {20 London
S4 | Clark |20 London
Pname | Color | Weight | City
Nut Red 12 London
P5 {Cam blue 12 Paris
S# | P# Qry
S1 |P1 1300 |

Database

Projection

The projection operator yields a "vertical" subset of a given
relation by selecting specified attributes in a specified left- to- right
order and the eliminating duplicate tuples within the attributes selected.
Projection provides us with a way to reorder the attributes of a given

relation.

No attribute may be specified more than once in a projection operator.

RIX,Y, e eemmeeen. JZ
Examples:-
1- Sfcity] City
| london”
Paris
Athens
2-S[Sname, city, S#, status] Sname | city S# | Status
Smith | London |S1 20
Jones | Paris S2 110
Blake | Paris S3 |30
Clark |London {S4 |20
Adams | Athens |S5 |30
3-{S Times P) [status, color] Status | Color
20 Red
10 Red
30 Red
20 Green
10 Green
30 Green
20 Blue
10 Blue
30 Blue

Fig. (4.5) Three sample projections.

Tt

Database

loin

e

Two tables each have a column defined over some common domain,
they may be joined over those two columns, the result of the join is a
new, table in which each row is formed by concatenating two rows, one
from each of he original tables, such that the two rows have the same
value in those two columns.

Exampie: tables S and P may be joined over their city column and the
result is shown as follows:-

S# |Sname | Status G@ p# | Pname | Color | weight f’.city
1 Smith | 20 tondon i P1 Nut Red 12 London
S1 Smith |20 Ltondon | P4 | Screw | Red 14 London
S2 |lones |10 Paris Pz | Bolt Green | 17 Paris
53 Blake {30 Paris P2 | Bolt green | 17 | Paris

Equijoin:- is that join in which the " joining condition” is based on
equality between values in the common column, and the result of the

equijoin must include two identical attributes.{ as shown in the above

example).

Natural join:- is an equijoin with one of the identical columns

eliminated.

Note:- join is not a primitive operation it is always equivalent to taking
the extended Cartesian product of the two relations and the performing

an appropriate restriction {(section} on he resuit.

Example 1 :- the natural join is a projection of a restriction of a product.

The following expression represents the natural join of relation S on S#

with relation SP on S#

Database

((S Times SP) where S.5# = SP.S#)

Which is the same as the following expression:-

S JOIN SP

[S.S#, Sname,Status, city,P#, Qtyl

always means natural Join

Result for both of the above expression is:-

S.S# | S.Sname | S.status | S.city | SP.P# | SP.QTY
S1 | Smith 20 London P1 300
S1 | Smith 20 London P2 200
S1 | Smith 20 London | P3 400
S1 | Smith 20 London P4 200
s1 | Smith 20 | London | P5 | 100
S1 | Smith 20 | London | P6 100
S2 | lJones 10 Paris P1 300
S2 Jones 10 Paris P2 400
S3 | Blake 30 Paris. P2 200
S4 Clark 20 London P2 200
sS4 Clark 20 London P4 300
S4 Clark 20 London P5 400

Fig. (4.6) JOIN of S and SP over S# (S JOIN SP).

Example 2:- The greater than JOIN can be expressed by using:-

(S TIMES P) where S.city > P.city

Result of the above expression is as follows:-

<# | Sname | Status [S.city |P# | Pname | Color | weight | P.city
S2 |Jones 110 Paris P1 Nut Red 12 London
S2 |Jones |10 Paris P4 | Screw |Red 14 London
S2 Jones | 10 Paris P6 Cog Red 19 London
S3 Blake |30 Paris P1 Nut Red 12 London
S3 Blake | 30 Paris P4 Screw | Red 14 Ltondon
S3 Blake |30 Paris P& Cog Red 15 London

L o }

gty R

. Database

Notes:-

1- A JOIN B is identical to A TIMES B8 whenAand B have no common
attributes.
2- We allow a sequence of JOINS to be written without embeded

parentheses.
- Ex:- The two expression :- (AJOINB}IOINC
A JOIN(B JOIN C)
. Can be written as A JOINB JOIN C

Since, the JOIN is associative.

Division

(DIV!DEBY)operatbr takes two relations, one binary and one unary
and builds a relation consisting of all values of one attribute of the
binary relation, such that the other attribute in the binary refation

- match all values in the unary relation. '

A DIVIDEBY B
Example:-
DRNG Doﬁ ‘ Dend Divid tsB‘f O™
| S# | P# P# %‘,\A\
L4.8 S#
's1 |41 PL| > 51
51 1Y/ P2 57 |
. S11P3 "'—“
s2 | A1)
52 led
s3 |1
s3 | P4

Fig. (4.7) sample divisions.

Database

Relational languages:

1- Relational algebra: is theoretical language with operations that work on
one or more relations to define another relation without changing the
. original relations. Such as projection, products, union, join, division.

2- Relational calculus: it is specifies what is to be retrieved rather than how
to retrieve it. (Range of value)

3- Database language (SQL): should allow a user to
o Create the database and relation structure
e Perform basic data management tasks, such as the insertion,
modification, and deletion of data from the relations.
¢ Perform both simple and complex queries

SQL: can be used by a range of users including database administrators (DBA),

management personal, application programmers, and many other types of end-
user. '

Relational language
e SQL (standard query language)
e (BE (query by example)

SOL statement = v
e DDL (data definition language)
1- Create table
2- Alter table
3- Drop table
Ex: create database travel and build table name car, owner, and data of travel
with all columns.

Car Owner Data travel
car-no name travel-no [pk]
~ model address date
" color car-no - car-no [fk]
Day of trave]
e Create database travel

» Create table cars (car-no char (8), mode! char (10), color char (8))

» Create table owner (name char (10), address char (20), car-no char (8)
¢ Create table data travel (travel-no numeric (10), date date, car-no char (8),
days of travel numeric (3)

&

N ——

Database

s Insert into car values (“1134567”, “Toyota”, “white”)
e Insert into owner values (“ahmed”, “Baghdad”, “1134567)
o Insert into data travel (234, {10/10/2003},71134567"

Add column to table car named motor no
e Alter table car add column motor no char (20)

Delete column from table car named color
e Alter table car drop column color
Assign the [pk] and [fk]
s Alter table car add constraint pp primary key (car-no);
s Alter table data of traveling add constraint ff foreign key {(car-no)

e DML (data manipulated language DB data)
1- Select
2- Insert
3- Delete
4- Update
e Select * from car

Get all car information
e Selectcar. * from car

Get all car-no

e Select car. car-no from car

Get car model for car-no (657489)
e Select car. model, car-no from car where car. car-no="657489”

Get cars with Toyota models
» Select car. Model, car. car-no from car where car. model="Toyota”

Delete each car when car-no 657489
e Delete from car where car. car-no="657489"

Get all cars model when color is white and owner “ahmed”
¢ Select car. # from car where car. Color="white™
and owner.name = ahmed”

How many trip the car-no {(4455986) had traveled
e Select count (*) from travel where car-no="4455985"

w
~»

e Database

* Select count (*) from travel where data travel. date="1/1/2007" |

How many days car-no (1005) had traveled

e Select sum (days of travel) from travel
Where data travel. car-no="1005"

Note: keyword (distinct) means getting the record without duplicate.
e Select distinct data travel. car-no from travel

Note: retrieval in order ascending and descending

Get all trips by car (1005) from the latest one

» Select data travel. car-no, data travel. date, data travel travel-no
From travel where data travel.car-no="1005"
Order by date ASCE

How many each car had tréveled
* * Select sum (day of travel) from data travel group by data travel. car-no

Change the driver of car 1005 to ali how lived in karada

e Update owner set name="ali”, address="karada” car- no—”IOOS”
Where owner. car-no="1005"

— Deletethedriver alnmed-fromcompany

¢ Delete from owner where owner.name="ahmed”

Remove all record from owner
e Delete from owner

Yo

