
86

Control Strategy and Expert Systems

What is Control Strategy?

Control Strategy (also called production system) is a system based on IF…

THEN… rules and consisting of three parts:

1. The production rules: A production rule is condition-action pair

presented in the following form “IF condition THEN action”, and it

represents as a single chunk of problem-solving knowledge. The condition

part of the rule is a pattern that determines when the rule may be applied to a

problem. The action part defines the associated problem-solving step.

2. The working memory: It contains a description of the current state of the

problem-solving.

3. The control structure: It implements search allowing the production

system to move towards a goal within the set of rules. The control structure

also called an interpreter or a recognize-act cycle.

Control Strategy types:

There are two broad kinds of control strategy: forward and backward

chaining systems. In a forward chaining system you start with the initial

facts, and keep using the rules to draw new conclusions (or take certain

actions) given those facts. In a backward chaining system you start with

some hypothesis (or goal) you are trying to prove, and keep looking for rules

that would allow you to conclude that hypothesis, perhaps setting new

subgoals to prove as you go. Forward chaining systems are primarily data-

driven, while backward chaining systems are goal-driven.

Forward Chaining System

In a forward chaining system the facts in the system are represented in a

working memory which is continually updated. Rules in the system

87

represent possible actions to take when specified conditions hold on items in

the working memory - they are sometimes called condition-action rules. The

conditions are usually patterns that must match items in the working

memory, while the actions usually involve adding or deleting items from the

working memory. The control structure will control the application of the

rules, given the working memory, thus controlling the system's activity. It is

based on a cycle of activity sometimes known as a recognize-act cycle. The

system first checks to find all the rules whose conditions hold, given the

current state of working memory. It then selects one and performs the

actions in the action part of the rule. The selection of a rule to fire is based

on fixed strategies, known as conflict resolution strategies. The actions will

result in a new working memory, and the cycle begins again. This cycle will

be repeated until either no rules fire, or some specified goal state is satisfied.

Rule-based systems vary greatly in their details and syntax, so the following

examples are only illustrative.

First we'll look at a very simple set of rules:

1. IF lecturing(X) AND marking-practicals(X) THEN ADD (overworked(X))

2. IF month(february) THEN ADD (lecturing(john))

3. IF month(february) THEN ADD (marking-practicals(john))

4. IF overworked(X) OR slept-badly(X) THEN ADD (bad-mood(X))

5. IF bad-mood(X) THEN DELET (happy(X))

6. IF lecturing(X) THEN DELET (researching(X))

Let us assume that initially we have a working memory with the following

facts:

month(february)

happy(john)

researching(john)

88

Production system will first go through all the rules checking which ones

apply given the current working memory. Rules 2 and 3 both apply, so the

system has to choose between them, using its conflict resolution strategies.

Let us say that rule 2 is chosen. So, lecturing(john) is added to the working

memory, which is now:

lecturing(john)

month(february)

happy(john)

researching(john)

Now the cycle begins again. This time rule 3 and rule 6 have their

preconditions satisfied. Lets say rule 3 is chosen and fires, so marking-

practicals(john) is added to the working memory.

On the third cycle rule 1 fires, so, with X bound to john, overworked (john) is

added to working memory which is now:

overworked(john)

marking-practicals(john)

lecturing(john)

month(february)

happy(john)

researching(john)

Now rules 4 and 6 can apply. Suppose rule 4 fires, and bad-mood(john) is

added to the working memory.

And in the next cycle rule 5 is chosen and fires, with happy(john) removed

from the working memory.

89

Finally, rule 6 will fire, and researching(john) will be removed from working

memory, to leave:

bad-mood(john)

overworked(john)

marking-practicals(john)

lecturing(john)

month(february)

The five facts in the working memory imply that there is a person called

“john” that works as lecturing and marking-practical at the same time in the

February month and this cause an overworked load and thus he has a bad-

mood state.

Backward Chaining System

So far we have looked at how rule-based systems can be used to draw new

conclusions from existing data, adding these conclusions to a working

memory. This approach is most useful when you know all the initial facts,

but don't have much idea what the conclusion might be. If you do know

what the conclusion might be, or have some specific hypothesis to test,

forward chaining systems may be inefficient. You could keep on forward

chaining until no more rules apply or you have added your hypothesis to the

working memory. But in the process the system is likely to do a lot of

irrelevant work, adding uninteresting conclusions to working memory. For

example, suppose we are interested in whether john is in a bad-mood. We

could repeatedly fire rules, updating the working memory, checking each

time whether (bad-mood john) is in the new working memory. But maybe

we had a whole batch of rules for drawing conclusions about what happens

when I'm lecturing, or what happens in February - we really don't care

about this, so would rather only have to draw the conclusions that are

relevant to the goal. This can be done by backward chaining from the goal

90

state (or on some hypothesized state that we are interested in). This is

essentially what Prolog does, so it should be fairly familiar to you by now.

Given a goal state to try and prove (e.g., bad-mood(john)) the system will first

check to see if the goal matches the initial facts given. If it does, then that

goal succeeds. If it doesn't the system will look for rules whose conclusions

(previously referred to as actions) match the goal. One such rule will be

chosen, and the system will then try to prove any facts in the preconditions

of the rule using the same procedure, setting these as new goals to prove.

Note that a backward chaining system does NOT need to update a working

memory. Instead it needs to keep track of what goals it needs to prove to

prove its main hypothesis. In principle we can use the same set of rules for

both forward and backward chaining. However, in practice we may choose

to write the rules slightly differently if we are going to be using them for

backward chaining. In backward chaining we are concerned with matching

the conclusion of a rule against some goal that we are trying to prove. So the

'then' part of the rule is usually not expressed as an action to take (e.g.,

add/delete), but as a state which will be true if the premises are true.

So, suppose we have the following rules:

1. IF lecturing(X) AND marking-practicals(X) THEN overworked(X)

2. IF month(february) THEN lecturing(john)

3. IF month(february) THEN marking-practicals(john)

4. IF overworked(X) THEN bad-mood(X)

5. IF slept-badly(X) THEN bad-mood(X)

And there is only one initial fact in the worked memory is: month(february),

and we're trying to prove bad-mood(john)

First we check whether the goal state (bad-mood(john)) is in the initial facts in

the working memory. As it isn't there, we will add the goal to working

memory and then we try matching it against the conclusions of the rules in

91

the Production Rules. It matches rules 4 and 5. Let us assume that rule 4 is

chosen first - it will try to prove overworked(john). Rule 1 can be used, and the

system will try to prove lecturing(john) and marking-practicals(john). Trying to

prove the first goal, it will match rule 2 and try to prove month(february). This

is a fact in the working memory. We still have to prove marking-

practicals(john). Rule 3 can be used, try to prove month(february). This is a

fact in the working memory and in this place we have proved the original

goal bad-mood(john).

One way of implementing this basic mechanism is to use a stack of goals

still to satisfy. You should repeatedly pop a goal of the stack, and try and

prove it. If its in the set of initial facts then its proved. If it matches a rule

which has a set of preconditions then the goals in the precondition are

pushed onto the stack. Of course, this doesn't tell us what to do when there

are several rules which may be used to prove a goal. If we were using Prolog

to implement this kind of algorithm we might rely on its backtracking

mechanism - it'll try one rule, and if that results in failure it will go back and

try the other. However, if we use a programming language without a built in

search procedure we need to decide explicitly what to do. One good

approach is to use an agenda, where each item on the agenda represents one

alternative path in the search for a solution. The system should try expanding

each item on the agenda, systematically trying all possibilities until it finds a

solution (or fails to). The particular method used for selecting items off the

agenda determines the search strategy - in other words, determines how you

decide on which options to try, in what order, when solving your problem.

We'll go into this in much more detail in the section on search.

Forwards vs. Backwards Reasoning

Whether you use forward or backward reasoning to solve a problem depends

on the properties of your rule set and initial facts.

Forward chaining is the best choice if:

1- All the facts are provided with the problem statement; or

92

2- There are many possible goals, and a smaller number of patterns of

data; or

3- There isn't any sensible way to guess what the goal is at the beginning

of the consultation.

Backward chaining is the best choice if:

1- The goal is given in the problem statement; or

2- The system has been built so that it asks for pieces of data rather than

expecting all the facts to be presented to it.

Example1: Suppose you have the following production rules:

1. IF John is a student THEN John enjoys student’s life

2. IF John enjoys student’s life

 THEN John meets friends AND John participates in university’s events

3. IF John meets friends THEN John needs money

4. IF John needs money THEN John has a job

5. IF John meets friends AND John participates in university’s events

 THEN John has little free time

6. IF John has little free time AND John has a job

 THEN John is not successful in studies

 AND John does not receive scholarship

Trace the Forward Chaining Algorithm using the given production rules to

get the goal “John does not receive scholarship” from the start sentence that

is “John is a student”. Show the contents of the Working Memory and the

Conflict Set (i.e., all the rules that match the facts in the Working Memory)

and the Rule Fired (i.e., select one member of conflict set to execute).

93

Note: You can rewrite all the sentences to atomic sentences (for example;

John is a student become as john_is_a_student) or you can only write them

as letters (for example; John is a student will be A and John enjoys student’s

life is B and so on).

Solution:

At the first, we can assume that each sentence just as a letter, so the

production rules will become as follows:

The tracing for this algorithm using the given production rules will be shown

as follows:

94

Then there are 8 facts which must to be found to reach to the goal I=“John

does not receive scholarship” and are:

1- A=John is a student.

2- B=John enjoys student’s life.

3- C=John meets friends.

4- D=John participates in university’s events.

5- G=John has little free time.

6- E=John needs money.

7- F=John has a job.

8- H=John is not successful in studies.

The production rules that are used to get these facts are {1,2,3,5,4,6}.

Example2: Suppose you have the following production rules:

95

a) Write the Forward Chaining Algorithm and then trace this algorithm using

the given production rules to verify the goal through the start fact.

b) Write the Backward Chaining Algorithm and then trace this algorithm

using the given production rules to verify the start fact through the goal.

Solution:

a) Forward Chaining Algorithm (Data-driven search algo.):

1. Begins with a pattern (a problem description) added to the working

memory.

2. The control structure compares matching of the pattern with IF part of

rules in the production rules.

3. Firing a rule, its THEN part is added to the working memory and the

process continues.

4. Search stops when the goal is found.

The tracing for this algorithm using the given production rules will be shown

as follows:

96

b) Backward Chaining Algorithm (Goal-driven search algo.)::

1. A goal (a pattern) is added to the working memory.

2. The control structure compares matching of the pattern with THEN part of

rules in the production rules.

3. Firing a rule, its IF part is added to the working memory and the process

continues.

4. Search stops when facts on problem are found.

The tracing for this algorithm using the given production rules will be shown

as follows:

97

What are expert systems?

Expert systems are computer programs that are constructed to do

the kinds of activities that human experts can do such as design,

compose, plan, diagnose, interpret, summarize, audit, give advice.

What is Expert System Architecture and Components?

The architecture of the expert system consists of several components as

shown in figure below:

1-User Interface

The user interacts with the expert system through a user interface that make

access more comfortable for the human and hides much of the system

complexity. The interface styles includes questions and answers, menu‐

driver, natural languages, or graphics interfaces.

2-Explanation Processor

The explanation part allows the program to explain its reasoning

to the user. These explanations include justifications for the system's

98

conclusion (HOW queries), explanation of why the system needs a

particular piece of data (WHY queries).

3-Knowledge Base

The heart of the expert system contains the problem solving

knowledge (which defined as an original collection of processed

information) of the particular applications, this knowledge is

represented in several ways such as if‐then rules form.

4-Inference Engine

The inference engine applies the knowledge to the solution of

actual problems. It s the interpreter for the knowledge base. The

inference engine performs the recognize act control cycle.

The inference engine consists of the following components:‐

1. Rule interpreter.

2. Scheduler

3. HOW process

4. WHY process

5. knowledge base interface.

5-Working Memory

It is a part of memory used for matching rules and calculation.

When the work is finished this memory will be raised.

