
33

Put x on closed;

Eliminate children of x on open or closed; put remaining children on

left end of open end

End;

Return (failure)

End.

Informed Search (Heuristic Search)

A heuristic is a method that might not always find the best solution

but is guaranteed to find a good solution in reasonable time. By sacrificing

completeness it increases efficiency. Heuristic search is useful in solving

problems which:-

• Could not be solved any other way.

• Solution takes an infinite time or very long time to compute.

• Heuristic search methods generate and test algorithms, from these

methods are:-

1- Hill Climbing.

2- Best-First Search.

3- A and A* algorithm.

1- Hill Climbing

The idea here is that, you don’t keep the big list of states around you

just keep track of the one state you are considering, and the path that got

you there from the initial state. At every state you choose the state leads

you closer to the goal (according to the heuristic estimate), and continue

from there.

The name “Hill Climbing” comes from the idea that you are trying to

find the top of a hill, and you go in the direction that is up from wherever

34

you are. This technique often works, but since it only uses local

information.

 Hill Climbing Algorithm

Begin

Cs=start state;

Open=[start];

Stop=false;

Path=[start];

While (not stop) do

{

if (cs=goal) then

return (path);

generate all children of cs and put it into open

if (open=[]) then

stop=true

else

{

x:= cs;

for each state in open do

{

compute the heuristic value of y (h(y));

if y is better than x then

x=y

}

if x is better than cs then

cs=x

else

stop =true;

}

}

return failure;

}

The figure bellow illustrates the hill climbing steps algorithm as it
described in tree data structure. (Note: we assume that the best value is
the smallest, in other problems we may assume the largest value is the
best)

35

Hill climbing Problems:-

Hill climbing may fail due to one or more of the following reasons:-

1- A local maxima: Is a state that is better than all of its neighbors but is not

better than some other states.

2- A Plateau: Is a flat area of the search space in which a number of states

have the same best value, on plateau it’s not possible to determine the best

direction in which to move.

3- A ridge: Is an area of the search space that is higher than surrounding

areas, but that cannot be traversed by a single move in any one direction.

Example:

36

Searches for R4

2- Best-First-Search

Best-First-search is a way of combining the advantages of both depth‐

first and breadth‐first search into a single method.

The actual operation of the algorithm is very simple. It proceeds in st

eps, expanding one node at each step, until it generates a node that

corresponds to a goal state. At each step, it picks the most promising of the

nodes that have so far been generated but not expanded. It generates

 the successors of the chosen node, applies the heuristic function to

them, and adds them to the list of open nodes, after checking to see

 if any of them have been generated before. By doing thischeck, we can gua

rantee that each node only appears once in the graph, although many node

s may point to it as a successors. Then the next step begins.

37

In Best-First search, the search space is evaluated according to a

heuristic function. Nodes yet to be evaluated are kept on an OPEN list and

those that have already been evaluated are stored on a CLOSED list. The

OPEN list is represented as a priority queue, such that unvisited nodes can

be queued in order of their evaluation function. The evaluation function

f(n) is made from only the heuristic function (h(n)) as: f (n) = h(n) .

Best-First-Search Algorithm

{

Open:=[start];

Closed:=[];

While open [] do

{

Remove the leftmost from open, call it x;

If x= goal then

Return the path from start to x

Else

{

Generate children of x;

For each child of x do

Do case

The child is not already on open or closed;

{ assign a heuristic value to the child state ;

Add the child state to open;

}

The child is already on open:

If the child was reached along a shorter path than the state currently

on open then give the state on open this shorter path value.

The child is already on closed:

If the child was reached along a shorter path than the state currently

on open then

 {

Give the state on closed this shorter path value

Move this state from closed to open

 }

}

Put x on closed;

Re-order state on open according to heuristic (best value first)

38

}

Return (failure);

}

Example:

Open Closed

[A5] []

[D3,B4,C5] [A5]

[C2,B4,I5] [A5,D3]

[F3,B4,I5] [A5,D3,C2]
[B4,I5] [A5,D3,C2,F3]

[C1,E3,I5] [A5,D3,C2,F3,B4]

[E3,I5] [A5,D3,F3,B4,C1]

[G0,I5] [A5,D3,F3,B4,C1,E3]

 [A5,D3,F3,B4,C1,E3,G0]

The goal is found &the resulted path is:

 A0 D4 F7 B 16 C 2 E 6 G1 =36

a

b
c

d

e i f

3

5

5

3 1 3

4

2c c

5

f 3

45

6

4

3 6

4

4 2

f

4

3g

f

0

1

39

The figure bellow shows the steps of the best first search

algorithm on a given tree as an assumption search space.

