
4.1 
 

 

Object Oriented Programming 

Compiled by:       Riad R. Sabti 

 

Object Oriented Concepts 
 

The C++ language was designed to facilitate and support the object 

oriented style of programming. It implements various OOP concepts by 

applying specific constructs and rules. 

 

 Class Definitions 
 

A class in C++ is declared as: class class_name { class_body }; 

 

The class body is private by default, but may consist of any number of 

sections with specific access rights declared by: 

 private:  accessed only by members of the class 

 protected: accessed also by members of derived classes  

 public:  accessed by all 

Data members and methods are declared in the appropriate sections.  

 

Methods are usually defined outside the class body, using the notation:  
ret_type class_name::method_name(arg_list) {method_body} 

 

Methods of short code may also be defined inline. Inlined methods are 

copied into the code wherever a call is made, which is more efficient. 

 

Inlined Method Definitions 

 
class Point { 

    int x, y;        

  public:            

    Point( int xi, int yi ) { x=xi; y=yi; }  // definitions      

    int getX() { return x; }     

    int getY() { return y; } 

    void move( int dx, int dy );             // declaration 

  }; 



Object Oriented Concepts     4.2 

 

 Constructors 
 

Constructors are member functions that return objects of a class. They 

have the same name as the class. Return type must not be specified. 

 

Constructors are not mandatory. For example, an object of class Point 

may be defined as follows: 
Point pt;  // declaration   

pt.setX(100); // initialization 

pt.setY(200); 

 

Declarations of objects as above are usually allowed only when there is 

no constructor, or when a null constructor that takes no arguments is 

defined, e.g. Point() { x = y = 100; } 

 

Declaration and definition of objects are usually combined as in 
Point pt = Point( 10, 20 ); 

given that the class definition contains the constructor 
Point( int xval, int yval ) { x = xval; y = yval; } 

 

Objects can also be defined in an abbreviated form to use the 

constructor above as in Point pt( 10, 20 ); 

 

Constructors can be overloaded, when the compiler decides which to use 

based on number and type of arguments. For example, if both of the 

constructors above had been defined, then the compiler interprets the 

following code as given: 
 Point a;     // using Point::Point() 

 Point b( 2, 4 );    // using Point::Point( int, int ) 

 

A form of constructor defines an object by copying the data elements 

of an existing object of same class (called a copy constructor), as in 
Point( Point p ) { x = p.x; y = p.y; } 

which can be used as in 
 Point a( 50, 60 );  // using Point::Point( int, int ) 

 Point b( a );       // using Point::Point( Point ) 



Object Oriented Concepts     4.3 

 

 Destructors 
 

Destructors are member functions that provide automatic mechanisms 

for executing code upon deleting objects when they become invalid, e.g. 

when leaving scope. The destructor is implicitly called once for each 

object at its destruction time. 

 

A destructor is of the same name as its class, but prefixed by a tilde 

character. It has no arguments and no return value.  

 

For example, a destructor of the Point class may be declared as 
~Point(); 

It can be defined as 
Point::~Point() { 

// code to run upon deleting object 

} 

 

Destruction of objects takes place when each object leaves its scope of 

definition, as in 
int func() { 

 Aclass obj; 

      . . . . . 

}                    // destructor is called implicitly 

 

Destruction also takes place for a dynamically allocated object upon 

release when it is no longer needed, as in 
Aclass objp = new Aclass();   

. . . . . 

delete objp;         // destructor is called implicitly 

 

Example: A Shape class has the following methods: 
void display();  // to display on screen 

void remove();  // to remove from screen 

~Shape() { remove(); }   

Note that if there was no destructor code, the displayed objects 

remain on screen even after they are deleted. 

 



Object Oriented Concepts     4.4 

 

 Operator Overloading 
 

Operator overloading is a mechanism to allow using standard operators 

with new operand types. For example, a type for complex numbers 

(defined as a “Complex” class) needs methods for basic arithmetic. 

  

class Complex { 

 double r, i; 

 

   public: 

 Complex() { r = 0.0; i = 0.0; } 

 Complex( double x, double y ) { r = x; i = y; } 

 Complex add( Complex op ); 

}; 

 

Complex Complex::add( Complex op ) { 

     double x = r + op.r; 

     double y = i + op.i; 

     return Complex( x, y ); 

}  

 

Thus, a complex number calculation ( c = a + b ) can be coded as:  
 Complex a(1.0, 2.0), b(3.5, 1.2), c; 

 c = a.add( b ); 

 

Although the above is absolutely correct, it would be more convenient 

to use the usual “+” operator to express the addition of two complex 

numbers. Fortunately, C++ allows overloading almost all of its operators 

for newly created types with classes.    

 

A “+” operator method can be declared instead of “add” as: 
 Complex operator+ ( Complex op ); 

It can be defined in the usual way outside the class body.  

 

Thus, a message written as   c = a.operator+( b ); 

may then be expressed simply as  c = a + b; 



Object Oriented Concepts     4.5 

 

Example: Complex class with overloaded operators for basic arithmetic. 

 

class Complex { 

 double r, i; 

   public: 

 Complex() { r = 0.0; i = 0.0; } 

 Complex( double x, double y ) { r = x; i = y; } 

 Complex operator+ ( Complex op ); 

 Complex operator- ( Complex op ); 

 Complex operator* ( Complex op ); 

 Complex operator/ ( Complex op ); 

 void print() { cout<<r<<“ + “<<i<<“ i\n”; } 

}; 

Complex Complex::operator+ ( Complex op ) { 

     double x = r + op.r; 

     double y = i + op.i; 

     return Complex( x, y ); 

} 

Complex Complex::operator- ( Complex op ) { 

     double x = r - op.r; 

     double y = i - op.i; 

     return Complex( x, y ); 

} 

Complex Complex::operator* ( Complex op ) { 

     double x = r*op.r – i*op.i; 

     double y = r*op.i + i*op.r; 

     return Complex( x, y ); 

} 

Complex Complex::operator/ ( Complex op ) { 

     double d = op.r*op.r + op.i*op.i; 

     double x = (r*op.r + i*op.i)/d; 

     double y = (i*op.r - r*op.i)/d; 

     return Complex( x, y ); 

} 

 

void main() { 

     Complex a(1.0,2.0), b(3.5,-1.2), c(0.2,1.0), res; 

     res = (a + b)/c – a*(a + b); 

     res.print(); 

} 

 



Object Oriented Concepts     4.6 

 

 Inheritance 
 

OOP simplifies designing new classes by using inheritance from existing 

classes that share common and/or similar elements. A new class may be 

declared to “inherit from” other classes. The “subclass” would thus 

automatically inherit all elements of its “superclasses”. 
 

For an example, an existing class Point is already defined as follows:  

class Point { 

    int x, y;        

  public:            

    Point() { x = y = 0; } 

    Point( int xi, int yi ) { x = xi; y = yi; }   

    void add( int xi, int yi ) { x += xi; y += yi; }   

    int getX() { return x; }     

    int getY() { return y; } 

    void print();  

}; 

void Point::print() {  

 cout << '(' << x << ',' << y << ")\n"; } 

 
Using inheritance, class Point3D may be defined as follows:   

class Point3D : public Point { 

    int z;        

  public:            

    Point3D() { z=0; } 

    Point3D( int xi, int yi, int zi ) { add(xi,yi); z=zi; }   

    void add3( int xi,int yi,int zi ) { add(xi,yi); z+=zi;}   

    int getZ() { return z; }     

    void print();   

}; 

void Point3D::print() { 

 cout << '(' << getX() << ',' << getY()  

      << ',' << z << ")\n"; } 

Notes: 

 Superclass null constructor is implicitly called before any of subclass. 

 If “add3” is named “add” in Point3D, it overrides the inherited one 

unless referred to as Point::add. 



Object Oriented Concepts     4.7 

 

Inheritance Access Rights 
Two types of inheritance access rights exist: public and private. By 

default, classes are privately derived from each other. 

  

 Using private inheritance, every inherited element of the superclass 

becomes private in the subclass.  

 Using public inheritance, every inherited element of the superclass 

remains as already declared. 

    

 

 

Construction 
Prior to the execution of a constructor for an object of a subclass, a 

constructor for each of its superclasses must initialize its part of the 

created object.  

 

 If an object of a subclass is created without explicit calls to its 

superclass constructors, then implicit calls are made to superclass null 

constructors that must exist in this case.   

 Explicit calls to superclass constructors can be specified after a 

single colon just before the body of the subclass constructor. 

 

// Implicit call to Point() 
    Point3D( int xi,int yi,int zi ) { add(xi,yi); z=zi; }   

 

// Explicit call to Point(int,int) 
    Point3D( int xi,int yi,int zi ) : Point(xi,yi) {z=zi;} 

 

If there are a number of superclasses, their constructor calls are made 

as a comma separated list. The explicit method initializes objects 

directly instead of using default values and additional assignments. 



Object Oriented Concepts     4.8 

 

Destruction 
When an object is destroyed, the destructor of its class is implicitly 

invoked. If this class is derived from other classes, their destructors 

are also called in a recursive call chain. 

  

Multiple Inheritance 
In singular inheritance, a class may be derived from more than one 

superclass in a singular hierarchy or framework, by specifying the 

immediate superclass, e.g.: 

 
    Class Animal : public Living { . . . }; 
    class Mammal : public Animal { . . . }; 
   class Cat : public Mammal { . . . };  

  

A class may also be derived from more than one superclass in different 

hierarchies forming a multiple inheritance framework, by specifying the 

immediate superclasses in a comma separated list, e.g.:  

 
   class Dog  : public Mammal, public Drawable { . . . }; 

    class Frog : public Animal, public Drawable { . . . }; 
   class Tree : public Living, public Drawable { . . . }; 

    class DatePalm : public Tree { . . . }; 

 

 

 

Tutorial:  

Define a Sphere class derived from the Circle class that was previously 

defined for chapter 3 tutorial. Public methods are: 

 Constructors for given int center coordinates and radius, int radius 

with center at (0,0,0), and double radius with center at (0,0,0). 

 Methods for obtaining volume and surface area. 

 Methods for getting the values of the data members. 

 Methods for resizing and shifting. 

 Method for printing values of a Sphere object in a clear form. 

 


