Mobile Equipment Power Requirements

Required Power:

Total Resistance $=$ Rolling Resistance (R.R) + Grade Resistance (G.R)

1. Rolling Resistance:

It is the resistance of a level surface to constant velocity motion a cross it.
*) For equipment which move on rubber tires the rolling resistance varies with:

- The size.
- Tread designed of the tires.
- Pressure on (Contact area)

For equipment which moves on crawler tires such as tractors the resistance varies primarily with:-

- Type and Condition of road surface.

The unit of rolling resistance is: kg/ton or lb/ton

$$
\mathbf{R} \cdot \mathbf{R}=\frac{\mathbf{P}}{\mathbf{W}}
$$

Where:

$\mathbf{R} \cdot \mathbf{R}=$ Rolling resistance kg or $\mathrm{lb} /$ ton
$\mathbf{P}=$ total tension in two cable lb or kg
$\mathbf{W}=$ gross weight of truck (ton)
${ }^{\circ}$ R.R of crawler equipment start from $50 \mathrm{kgf} /$ ton or $110 \mathrm{lb} /$ ton

Type of surface	Steel tires, plain bearings		Crawler type track and wheel		Rubber tires, antifriction bearings			
	lb/ton	kg / m ton	lb/ton	kg / m ton	High pressure		Low pressure	
					lb/ton	kg/m ton	lb/ton	kg/m ton
Smooth concrete	40	20	55	27	35	18	45	23
Good asphalt	50-70	25-35	60-70	30-35	40-65	20-33	50-60	25-30
Earth, compacted and maintained	60-100	30-50	80-80	30-40	40-70	20-35	50-70	25-35
Earth, poorly maintained	100-150	50-75	80-110	40-55	100-140	50-70	70-100	35-50
Earth, rutted, muddy, no maintenance	200-250	100-125	140-180	70-90	180-220	90-110	150-200	75-100
Loose sand and gravel	280-320	140-160	160-200	80-100	260-290	130-145	220-260	110-130
Earth, very muddy, rutted, soft	350-400	175-200	200-240	100-120	300-400	150-200	280-340	140-170

2. The effect of grade on required tractive effort: Tractive effort of vehicles is the effort required to keep it moving increase or reduces approximately in proportion to the slope of the road, and this tractive effort is to increase with plus slope or decrease with minus slope , this tractive effort can be calculated from:

Tractive Effort $=\boldsymbol{W} \times 10 \times \% \boldsymbol{G} \Rightarrow \boldsymbol{k g}$

$$
=\boldsymbol{W} \times 20 \times \% \boldsymbol{G} \Rightarrow \boldsymbol{l} \boldsymbol{b}
$$

Where:

W: gross weight of truck (ton).
G: Slope \%

3-Coefficient of Traction:

To determine the maximum possible tractive force between the tire or track and the surface just before slippage occurs.

$$
\text { Coefficient of traction }=\frac{\text { Tractive force }}{\text { total pressure between tractive and road surface }} \begin{gathered}
\text { or (effective vehicle weight) }
\end{gathered}
$$

For track type
4-Wheel tractor
2-Wheel tractor

Use total tractor weight
40% of vehicle gross weight
50% of vehicle gross weigh

Typical values of coefficient of traction for common surfaces are given in table

Surface	Rubber Tires	Crawler tracks
Dry, rough concrete	$0.8-1.0$	0.45
Dry, clay loam	$0.5-0.7$	0.9
Wet, clay loam	$0.4-0.5$	0.7
Wet, sand and gravel	$0.3-0.4$	0.35
Loose, dry sand	$0.2-0.3$	0.3
Dry snow	0.2	$0.15-0.35$
Ice	0.1	$0.1-0.25$

4. The effect of altitude on the performance of internal combustion engines:

An internal combustion engine operates by combining oxygen from the air with the fuel. The density of the air is reduced because of altitude, so the quantity of oxygen in a given volume of air will be less than for the same volume of air at sea level.

This can calculate from:-

Loss due altitude $=\mathbf{h p} \times 0.03 \times \frac{H-300}{300} \Rightarrow m$

$$
=h p \times 0.03 \times \frac{H-1000}{1000} \Rightarrow f t
$$

Effective power $=$ sea level power - Loss due altitude

5-Combined effect of pressure and temperature on the performance of internal combustion engine:

$$
H_{c}=H_{o} \frac{P_{s}}{p_{o}} \sqrt{\frac{T_{o}}{T_{s}}}
$$

Where:-
\mathbf{H}_{c} : corrected hp for standard conditions.
\mathbf{H}_{0} : observed hp as determined from test.

$$
\begin{array}{rlr}
\mathbf{P}_{\mathrm{s}}: \text { standard pressure } & =29.92 \quad \mathrm{in} . \mathrm{Hg} \\
& =760 \quad \mathrm{~mm} . \mathrm{Hg}
\end{array}
$$

$\mathbf{P}_{\mathbf{o}}$: observed pressure at time of test.
$\mathrm{T}_{\mathbf{0}}$: absolute temperature ${ }^{\circ} \boldsymbol{F}=\mathbf{4 6 0}+$ observed Temperature.

$$
{ }^{\circ} \mathrm{C}=273+\text { observed Temperature. }
$$

\mathbf{T}_{s} : absolute temperature for standard conditions $520^{\circ} \mathrm{F} ; 288{ }^{\circ} \mathrm{C}$

6. Rim pull:-

Is the tractive force between the rubber tires of driving wheels and the surface on which they travel.

It may be determined from the formulas:-
Rimpull $=\frac{375 \times h p \times e f f i c i e n y}{\text { speed }, m p h}$
Rimpull $=\frac{272.2 \times h p \times e f f i c e n c y}{\text { speed } \mathrm{km} / \mathrm{hr}}(\mathrm{kg})$

The efficiency of most tractors and trucks will range from 80 to 85 percent.

7. Drawbar Pull :-

The force that can be developed to tow a load by crawler tractor.

Example 1:-

Wheel - tractors is used on a road project. The rimpull required or the tractive force required in this work area is 42000 lb . In the fully loaded condition 52% of the total vehicle weight is on the drive wheels. The fully loaded vehicle weight is 230880 lb . What is the minimum value of the coefficient of traction needed to maximum possible travel speed?

Solution:

52% from weight $=0.52 * 230880=120058 \mathrm{lb}$
Coefficient of traction $=\frac{\text { Tractive force }}{\text { total pressure between tractive and road surface }}=\frac{42000}{120058}=0.35$
or (effective vehicle weight)

Example 2:

A tractor whose weight is 15 tons has a drawbar pull of 5684 lb in the sixth gear when operate on a level road having a rolling resistance of $110 \mathrm{lb} / \mathrm{ton}$. If the tractor is operated on a level road having a rolling resistance of $180 \mathrm{lb} /$ ton. What is the effect on drawbar pull will be?

Solution:

$\mathrm{P}=\mathrm{W} * \mathrm{R} . \mathrm{R}$
$\mathrm{P}=15(180-110)=1050 \mathrm{lb}$

Drawbar pull effective $=5684-1050=4634 \mathrm{lb}$

Example 3:- For a rubber tired tractor with 140 hp engine and a maximum speed of 3.25 mph in the first gear with total weights 12.4 ton and is operated up a haul road with slope of 2% and rolling resistance of $100 \mathrm{lb} /$ ton .What is the pull available.

Solution:

Rimpull effort $=\frac{375 * h p * \text { efficiency }}{\text { speed }}=\frac{375 * 140 * 0.85}{3.25}$

$$
=13731 \mathrm{lb}
$$

$P_{\text {Rolling resistance }}=\mathrm{W} * \mathrm{R} . \mathrm{R}$

$$
=12.4 * 100=1240 \mathrm{lb}
$$

$P_{\text {grade }}=\mathrm{W} * 20 * \mathrm{G} \%$

$$
=12.4 * 20 * 2=496 \mathrm{lb}
$$

Total resistance $=$ R.R+G.R $=1240+496=1736 \mathrm{lb}$

Available rimpull $=13730-(1240+496)=11994 \mathrm{lb}$

What is the Maximum weight can this equipment works with?
$11994=\mathrm{W}_{\mathrm{c}} * 100+\mathrm{W}_{\mathrm{c}} * 20 * 2$
$\mathrm{W}_{\text {capacity }}=85.7$ tons
$\mathrm{W}_{\text {soil }}=85.7-12.4=73.3$ tons

Example 4:

What is the maximum slope that can a wheel type tractor pulled scraper, total weight at the sea level 62840 kg , its rolling resistance 22.9 kg / ton, engine power 300 hp and its speed $16 \mathrm{~km} / \mathrm{hr}$.

Solution:

Total Rimpull $=\frac{\mathbf{2 7 2 . 2} \times \boldsymbol{h p} \times \text { efficency }}{\text { speed } \boldsymbol{k m} / \boldsymbol{h r}}=\frac{272.7 * 300 * 0.8}{16}=4083 \mathrm{~kg}$
$P_{R R}=P * R . R=\frac{62840}{1000} * 22.9=143.9 \mathrm{~kg}$
$P_{G r a d}=$ Total Rimpull $-P_{R R}$
$P_{\text {Grad }}=4083-143.9=3939.1 \mathrm{~kg}$
$P_{\text {Grad }}=\mathrm{W}^{*} 10 * \mathrm{G}$
$3939.1=\frac{62840}{1000} * 10 *$ slope

Slope $=62 \%$

$$
\begin{aligned}
& P_{\text {rolling }}=R \cdot R * W \Leftarrow R \cdot R=\frac{P}{W}
\end{aligned}
$$

in $50 \mathrm{~kg} /$ Ton 2 crawler 1 ي 1

$$
P_{\text {rolling }}=(R \cdot R-50)+W
$$

 G60 Trolling Ut

available or net fore \equiv Rimpull force - tractive force (T.R)
 ~保| 1

$$
\gamma=\frac{\omega}{v} \Rightarrow \omega=\gamma * v
$$

tractive fore

$$
\text { tractive fore }=P_{R . R}+P_{G}
$$

Soil Stabilization and Compaction

Volumetric Measure: For bulk materials volumetric measure varies with the materials position in the construction process see figure below, the same weight of a material will occupy different volumes as the material is handling on the project.
1 Cubic Yards
in natural conditions in-
place Yards
(Bank Yards)
1.25 Cubic Yards
after digging
(Loose Yards)
0.9 Cubic Yards after compaction (Compacted Yards)

Soil volume is measured in one of these states:-

Bank cubic yard or meter: one cubic yard or one cubic meter of material as it lies in the natural state (B_{cy} or B_{cm})

Loose cubic yard or meter: one cubic yard or one cubic meter of material after it has been distance by a loading process (L_{cy} or L_{Cm}).

Compacted cubic yard or meter: one cubic yard or one cubic meter of material in the compacted state ($\mathrm{C}_{\mathrm{cy}}, \mathrm{C}_{\mathrm{cm}}$)

Bank cubic meter

Loose cubic meter

Compacted cubic meter

1 cubic meter $\left(\mathrm{m}^{3}\right)$ of material as it lies in the natural state
$1 \mathrm{~m}^{3}$ of material after it has been disturbed by a loading process

$1 \mathrm{~m}^{3}$ of material in the compacted state

* In planning or estimating a job, the engineer must use a consistent volumetric state in any set of calculations. The necessary consistency volumetric of units can achieve by:

Shrinkage factor $=\frac{\text { compacted dry unit weight }}{\text { bank dry unit weight }}$
Shrinkage $\%=\frac{\text { compacted unit weight-bank unit weight }}{\text { compacted unit weight }} \times 100$
Swell factor $=\frac{\text { loose dry unit weight }}{\text { bank dry unit weight }}$
Swell $\%=\left(\frac{\text { bank unit weight }}{\text { loose unit weight }}-1\right) * 100$
$\mathbf{C}_{c y_{m}}$ or $\mathbf{C} c m_{m}=\mathbf{B} c y_{m}$ or $\mathbf{B}_{c m_{m}}$ (1-sh\%)
$\mathbf{L} c y_{m}$ or $\mathbf{L}_{c m_{m}}=\mathbf{B} y_{y_{m}}$ or $\mathbf{B}_{c m_{m}}(\mathbf{1 +} \mathbf{s w} \%)$

TABLE 4.4 Represertative properieso ol eath and Iock

Material	Bank weight		Loose weight		Percent swell	$\begin{aligned} & \text { Swel } \\ & \text { factol } \end{aligned}$
	$\mathrm{lb} / \mathrm{Cy}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lb} / \mathrm{cy}$	$\mathrm{kg} / \mathrm{m}^{3}$		
Clay, dry	2,700	1,600	2,000	1,185	35	0.74
Clay, wet	3,000	1,780	2,200	1,305	35	0.74
Eath, dry	2,800	1,660	2,440	1,325	25	0.80
Earth, wel	3,200	1,895	2,580	1,528	25	0.80
Earth and glavel	3,200	1,895	2,600	1,575	20	0.83
Gravel, dry	2,800	1,660	2,490	1,475	12	0.89
Gravel, wet	3,400	2,020	2,980	1,765	14	0.88
Limestone	4,400	2,610	2,750	1,630	60	0.63
Rock, well basted	4,200	2,490	2,640	1,565	60	0.63
Sand, dry	2,600	1,542	2,260	1,340	15	0.87
Sand, wet	2,700	1,600	2,360	1,400	15	0.87
Shale	3,500	2,075	2,480	1,470	40	0.71

The swell factor is equal to the loose weight divided by the bank weight per unit volume.

Soil Compaction

Compaction can:

1. Reduce settlements.
2. Increase strength.
3. Improve bearing capacity.
4. Control volume changes.
5. Lower permeability.

Degree of Compaction \% (D) $=\frac{\text { Maximum dry density (in field) }}{\text { Maximum dry density (in lab) }}$

Specifications $\rightarrow \mathrm{D} \geq 95-\mathbf{1 0 0} \%$

Example:-

If the earth is placed in fill as a compacted soil at the rate of $200 \mathrm{C}_{\mathrm{cyd}} / \mathrm{hr}$.
How many Loose (cyd / hr) must be supplied if the compacted, bank, loose unit weight are ($\mathrm{C}=2890, \mathrm{~B}=2590$, $\mathrm{L}=2390$) lb/ cyd

Solution:

Shrinkage $\%=\frac{\text { compacted unit weight }- \text { bank unit weight }}{\text { compacted unit weight }} \times 100$
Shrinkage $\%=\frac{2890-2590}{2890} * 100=10,38 \%$
$\mathrm{C}_{\mathrm{cy}}=\mathrm{B} c y_{m}(1-\mathrm{sh} \%) \quad \mathrm{B}_{\mathrm{cy}}=\frac{200}{0.8962}=223.1 \mathrm{cyd}$
$\mathrm{L}_{\mathrm{cy}}=\mathrm{B} \mathrm{cy}_{m}(1+\mathrm{sw} \%)$ Swell $\%=\left(\frac{\text { bank unit weight }}{\text { loose unit weight }}-\mathbf{1}\right) * \mathbf{1 0 0}$
$\mathrm{Sw} \%=\left(\frac{2590}{2390}-1\right) * 100=8.36 \%$
Loose $/ \mathrm{cy}=223.16(1+0.0836)=241.8 \mathrm{cy}$

TABLE 5.1 Soil types versus the method of compaction

Material	Impact	Pressure	Vibration	Kneading
Gravel	Poor	No	Good	Very good
Sand	Poor	No	Excellent	Good
Silt	Good	Good	Poor	Excellent
Clay	Excellent with confinement	Very good	No	Good

METHODS OF COMPACTING EQUIPMENT

Applying energy to a soil by one or more of the following methods will cause compaction:

1. Impact-sharp blow
2. Pressure-static weight
3. Vibration-shaking
4. Kneading-manipulation or rearranging

Types of Compaction Equipment

1. Tamping rollers
2. Smooth-drum vibratory soil compactors
3. Pad-drum vibratory soil compactors
4. Pneumatic-tired rollers

1. Pad foot rollers:

Used for clays, mixtures of sand and clay.

2. Sheeps foot rollers:

Used for soil containing rocks

3. Smooth wheel rollers: Sand, gravel, crushed stone may have one or more drums

4. Pneumatic tired rollers: sand, gravel and pavement surface.

5. Vibrating Compactors: sand, gravel, rock.

Manually operated
vibratory-plate compactor crushed Aggregate

Manually operated Rammer compactor

Roller Production Estimating:-

Compacted cubic yards or meters per hour $=\frac{\mathbf{W} \times \mathbf{S} \times \mathbf{L}}{\mathbf{P}}$

Where:

\mathbf{W} : compacted width per roller pass $\Rightarrow \mathrm{ft}$ or meter .
\mathbf{S} : average roller speed $\Rightarrow \mathrm{mph}$ or km / h
$\mathbf{L}:$ compacted $=$ compacted lift thickness $\Rightarrow \mathrm{ft}$ or meter.
\mathbf{P} : number of roller passes required to achieve the required density.

Example:

A self - propelled tamping foot compactor will be used to compact a fill being constructed of clay material. Field tests have shown that the required density can be a achieved with four passes of the roller operating at an speed of 1.5 mph , the compacted lift will have a thickness of equal 5 in, the roller width is 7 ft , the scraper production estimated for the project is 510 bcy per hour . shrinkage $\%=17 \%$,How many rollers will be required to maintain this production?

Solution:

Production of roller/hr $=\frac{\boldsymbol{W} \times \boldsymbol{S} \times \boldsymbol{L}}{P}=\frac{\frac{7}{3} \times 1.5 \times 1760 \times \frac{5}{3 \times 12}}{4}=214 \frac{c y d}{h r} \quad \begin{aligned} & \text { foot to yd } \div 3 \\ & \begin{array}{l}\text { mile to } \mathrm{yd} * 1760 \\ \text { inch to foot } \div 12\end{array}\end{aligned}$
$\mathrm{C}_{\mathrm{cy}}=\mathrm{B} c y_{m}(1-\mathrm{sh} \%)=214$

B cyd/hr =214/(1-0.17)=258 Bank cyd
No.of rollers $=\frac{\text { Prouction of Scraper }}{\text { productio of Roller }} 510 / 258=1.97$ rollers

Soil Stabilization

Soil stabilization is any treatment of soil which increases its natural strength, there are two kinds of stabilization:-

1-Mechaincal
2-Chemical
Methods of stabilization soils included, but are not limited to, the following operations:

1. Blending and mixing heterogeneous soils to produce more homogeneous soils.
2. Incorporating lime or lime-fly ash into soils that have high clay content.
3. Blending asphalt with the soil.
4. Incorporating Portland cement with soils they are largely granular in nature.
5. Incorporating various salts into the soil.
6. Incorporating certain chemicals into the soil.
7. compacting the soils after they are processed

Tractors

Are self-contained units that are designed to provide tractive power for drawbar work, because they are low center of gravity machines.

Tractors are classified on the basis of running gear to:

1. Crawler Track.

2. Wheel Track.

Applications:

- Land clearing.

- Bulldozing.

- Ripping.

- Towing other pieces of construction equipment.

Selecting of tractor:-

In selecting tractor several factors should be considered:

1. The size required for a given job.
2. The kind of job for which it will be used.

- Bulldozing.
- Pulling a scraper.
- Ripping.
- Clearing land, etc.

3. The type of ground over which it will operate.
4. The firmness of the haul road.
5. The smoothness of the haul road.
6. The slope of the haul road.
7. The length of haul road.
8. The type of work it will do after this job is completed

Bulldozer

Is a tractor unit that has a blade attached to the machine front. It is designed to provide attractive power for drawbar work. The amount of material the dozer moves is dependent on the quantity that will remain in front of the blade during the push.

Bulldozers are used in:

1. It is used in moving earth or rock for short hand (push) distance up to 300 ft .
(91 m) in the case of large dozers.
2. Leveling of land (Spreading earth)
3. It is used in backfilling trenches.
4. It is used in opening up roads through mountains or rocky terrain.
5. Clearing the site from the rubble.
6. Helping load tractor -pulled scrapers.
7. It is used in clearing land of timber, stumps, and root mat.

Types of Dozers:

1. Crawler Dozer
2. Rubber-tired Dozer

Blade moving:

By Cable
Hydraulically

Crawler Bulldozer

Rubber tired Bulldozer

Blades: A bulldozer blade consists of a moldboard with replaceable cutting
edges and side bits.

There are five types of blades which are:
1.Straight (S) blade: is designed for short and medium distance passes, such as backfilling, grading and spreading fill material.
 angle up to a maximum of 25 degrees left or right to the dozer line of travel
used for side casting material, backfilling or making side hill cuts.

3-Universal blade (U): Its blade is wider than a straight blade and having a 25°
wings to reduce the loose soil spillage.

4- Semi-U (SU) blade: It is similar to the U type but with shorter wings.

5-Cushion (C) blade: Its blade is shorter than a straight blade. It is usually mounted on large dozers that are used to push-loading scrapers.

Straight blade

Universal blade

Angle blade

Cushion blade

Figure 4-7 Common types of dozer blades.

Tilting

Pitching

Angling

Bulldozer Production estimating:

The amount of material that the dozer moves depends on the quantity which will remain in front of the blade during the push. The production depends on:

1-The blade type.
2-The type and condition of material.

3-The cycle time.

The load that a blade will carry can be estimated by several methods:-

1. The manufacture blade ratings.
2. The previous experience (similar material equipment, and work conditions).
3. The field measurements.

The manufactures usually provide a blade rating that is based on:

$$
\mathrm{Vs}=0.8 \mathrm{LH}^{2}
$$

Where:

Vs = capacity of straight or angle blade.
$\mathrm{L}=$ blade length or width in m or yd
$H=$ effective blade height in m or $y d$

Example:

Estimate the approximate output of a bulldozer for the following conditions:-

The soil is a sandy loam of density 2700 lb per cu yd bank measure, swell 25%
, Haul distance 100 ft . Crawler tractor 72 hp , straight blade size 9 ft 6 in

$$
\mathrm{L}=9.5 \mathrm{ft} \quad \mathrm{H}=3 \mathrm{ft}, \text {,Fixed time }=0.32 \mathrm{~min} .
$$

Operating factor 50 min per hr

Pushing along 100 ft distance at a speed of 1.5 mph .

Returning the 100 ft distance at a speed of 3.5 mph .

Solution:

Production of bulldozer/ hour $=$ capacity of blade \times No. of trip/ hr Capacity of blade $=0.8 L H^{2}$

$$
=0.8 \times 3.1 \times 1^{2}=2.48 \text { cy Loose measure } .
$$

No.of Trip / hour $=\frac{\text { operating factor }}{\text { cycle time }}$
Cycle time $=$ pushing time + Returning time + fixed time
pushing time $=\frac{\frac{100}{5280\left(\frac{\mathrm{ft}}{\mathrm{mi}}\right)}}{1.5} \times 60 \frac{\mathrm{~min}}{\mathrm{hr}}=$
Cycle time $=\frac{\frac{100}{5280}}{1.5} \times 60+\frac{\frac{100}{5280} * 60}{3.5}+0.32=1.402 \mathrm{~min}$
No.of Trip / hour $=\frac{\text { operating factor }}{\text { cycle time }}=\frac{50}{1.402}=35.6$
Production of bulldozer/hour $=$ capacity of blade \times No. of tripe $/ \mathrm{hr}$ Out put $=\frac{2.40}{1+0.25} * 35.6=68.3$ cy bank measure

Example:

A (D7G) crawler tractor with a straight blade is to be used in dozing operation to a site with dimensions $(50 \times 100) \mathrm{m}$.find the minimum time in hours needed to excavate this site with a depth of 30 cm with the below information:-

Blade dimension type $\mathrm{S}(0.97 \times 2.9) \mathrm{m}$

Operation factor $50 \mathrm{~min} / \mathrm{hr} \quad$ Swell $\%=25 \%$

Push speed $2.4 \mathrm{~km} / \mathrm{hr}$

Return speed $5.6 \mathrm{~km} / \mathrm{hr} \quad$ Fixed time $=0.32$

Solution:

Production of bulldozer $/$ hour $=$ capacity of blade \times No.of trip $/ \mathrm{hr}$ Capacity of blade $=0.8 L H^{2}$

$$
=0.8 \times 2.9 \times 0.97^{2}=\mathbf{2 . 1 8} \boldsymbol{m}^{\mathbf{3}} \text { Loose measure }
$$

Cycle time $=$ pushing time + Returning time + fixed time
Cycle time $=\frac{\frac{100}{1000} * 60}{2.4}+\frac{\frac{100}{1000} * 60}{5.6}+0.32=3.9 \mathrm{~min}$
No. of Trip/hour $=\frac{\text { operating factor }}{\text { cycle time }}=\frac{50}{3.9}=12.82$
Out put (Production of bulldozer/hour) = capacity of blade \times No. of trip $/ \mathrm{hr}$

$$
=\frac{2.18}{1+0.25} * 12.82=22.35 \mathrm{~m}^{3} \text { bank measure }
$$

Min.Time $=$ volume/output(100*50*0.3) $/ 22.35=67 \mathrm{hr}$

Cycle time $=\frac{\frac{50}{1000} * 60}{2.4}+\frac{\frac{50}{1000} * 60}{5.6}+0.32=2.105 \mathrm{~min}$
Trip $/ \mathrm{hr}=50 / 2.105=23.75$
Out put $=\frac{2.18}{1.25} * 23.75=41.42 \mathrm{~m}^{3} \mathrm{bm}$
Volume $=(100 * 50 * 0.3)=1500$
Min. Time $=$ volume/output $=\frac{1500}{41.42}=36.21 \mathrm{hr}$

Scrapers

1. Introduction:

The scraper is an equipment which is used to excavate, load, haul, and dump soil over a medium to long hauling distances. It excavates or cuts the soil by lowering the front edge of its bowl into soil.

A typical type of such equipment is shown in Fig.(1) below.

The scrapers are usually used for a haul distance in the range of (150-900m). For longer hauling distances, a combination of tucks and scrapers may be needed.

A typical working cycle for scraper is shown in Fig.(2) below:

WORK CYCLE

Fig.(2): Scraper Working Cycle.

2. Scraper Types:

The main types of scrapers are:

1. Pusher-Loaded scrapers.
2. Self-loading scrapers.

For easy to load soil (i.e not for a rocky ground), a self-loading scraper may be used up to a haul distance of about 250 m . For longer haul distances a pusher-loaded scraper is required to assist in using the scraper for loading and transporting of soil.

A Crawler-Tractor towed Two Scrapers.

Pusher-Loaded Scrapers:

The main types of these scrapers are:

1. Crawler-tractor towed two axle scrapers,

2. Pusher-loaded scraper:
-Single-powered axle

-Tandem-powered axles: The heavier scraper types have two engines
('tandem powered'), one driving the front wheels, one driving the rear wheels.

Self-Loading Scrapers:

The main types of these scrapers are:
Type(1):. Elevating wheel-tractor scraper:
In which a chain elevator is mounted on the front of the bowl to increase the amount of the collected soil in the bowl. It is economical to be used in short hauling distances.

Type(2): Auger type:
It is usually used in difficult conditions such as laminated rocks, granular or frozen soils.

Example:-

For the haul conditions as stated below, analyze probable scraper production if the total length of haul when moving from the cut to the fill is 4000 ft as follows:-

Soil density = 3100 lb / bank cy

Average load time of 0.85 min and the expected load from load growth curve will be 96% of capacity.

Swelling 25\%
Capacity of scraper(heaped) $=31$ cu-yd
Weight of scraper empty $=96880 \mathrm{lb}$
Fixed time equal to 0.45 min .

Solution:

Production of scraper $=$ capacity \times No.of cycles $($ trip $/ \mathrm{hr})$
Capacity $=31 \times 0.96=29.76$ Loose cy
$\frac{29.76}{1+(s w \%-10)}=\frac{29.76}{1+(25 \%-10 \%)}=25.87$ Equivalent Bank cy
weight of scraper with clay $=96880+25.8 \times 3100=176860 \mathrm{lb}$
No. of cycle/hr. $=\frac{\text { operation factor }}{\text { cycle time }}$
No. of cycle $/ \mathrm{hr} .=\frac{50^{*}}{\text { Cycle time of scraper }}$

* Working time in minutes/hr.

To calculate the cycle time:

Using performance chart with the input data (Total resistance as a \%, weight of loaded scraper to obtain the speed).

Haul Dis. grade \% R.R \% total (R) speed time (min)

loaded scraper

176860 lb

1200	$+4 \%$	$+4 \%$	$+8 \%$	9 mph	$\frac{1200 * 60}{9 * 5280}=1.515^{*}$
1400	$+2 \%$	$+4 \%$	$+6 \%$	12 mph	$\frac{1400 * 60}{12 * 5280}=1.325$
1400	-2%	$+4 \%$	$+2 \%$	32 mph	$\frac{1400 * 60}{32 * 5280}=0.497$

* 1 mile $=5280 \mathrm{ft}$.

Empty scraper

Using Fig. 12 shown below with the input data (Total resistance as a $\%$, weight of empty scraper to obtain the speed).
$96880 \mathrm{lb}=\mathrm{wt}$. of empty scraper.

| Haul Dis. | grade $\%$ | R.R $\%$ | | T.R | speed |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| time (min) |
| :--- |
| 1400 |

No. of cycle $/ \mathrm{hr} .=\frac{50^{*}}{\text { Cycle time of scraper }}=9.257$
\therefore production $=25.8 \times 9.2=238.83$ cyd per hr. bank measure

Number of scrapers served by a push dozer:-

When using dozer or tractor to push scraper it is desirable to match the number of pushers with the number of scrapers. If a pusher or a scraper must wait for the other, it reduces the operating efficiency of the waiting unit and the project and results in an increased production cost.

To determine the number of scrapers that a dozer or tractor may serve we use the formula below:-
$\mathrm{N}=\frac{T s}{T p}$

Where:

$\mathrm{N}=$ number of scrapers served.

Ts = cycle time for scraper.
$\mathrm{Tp}=$ cycle time for pusher dozer or tractor.

