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FINITE DIFFERENCE

Function of one variable

Ordinary (and also partial) differential equations of order two or more conditions for complete solution.

If these conditions are given at the beginning and at the end of the domain of the problem, then boundary value problem is

obtained.

Numerical Solution Of Boundary Value Problems By Finite Differences

Let y = y(x).The derivatives of y (suchas y' = d"/dx y ¥ dzy/dxz , ..eene) @re converted into expressions by finite

differences A —_—
Define yi=y at xi (node i) dy/dx
h=Ax =xit+l - xi =xit+2 - xi+1 @ Secant
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FINITE DIFFERENCE

In , finite-difference methods (FDM) are a class of numerical techniques for
solving by approximating with . Both the spatial domain and
time interval (if applicable) are , or broken into a finite number of steps, and the value of the solution

at these discrete points is approximated by solving algebraic equations containing finite differences and values
from nearby points.

Finite difference methods convert (ODE) or (PDE),
which may be , Into a that can be solved by matrix algebra techniques.
Modern computers can perform these computations efficiently which, along with their relative

ease of implementation, has led to the widespread use of FDM in modern numerical analysis.'*' Today, FDM
are one of the most common approaches to the numerical solution of PDE, along with

solving differential equations by approximating derivatives


https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Discretization
https://en.wikipedia.org/wiki/Ordinary_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Nonlinear_partial_differential_equation
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Finite_difference_method#cite_note-GrossmannRoos2007-1
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_difference_method#cite_note-GrossmannRoos2007-1
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FINITE DIFFERENCE
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Boundary Value Problem

First Derivative
Forward And Backward Difference

at node i

L= Ay; =+ .(Vis1— ¥)  forwarddifference (A)

Vyi
= % (¥i— ¥Yi-1) backward dif ference (V)

B. W. D < Exact Solution < F. W. D
Central Derivative
at node i

Central derivative =% (FW.D+ BW.D)

dy _ 1
= === W2 = Yi-2)

Central difference is preferable because it has lower error.
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2. Second Derivative

at node i
d’y d (dy
dx? ~ dx\dx

_ (dy/dx)iy,— (dy/dx);
- h

_ Oisa — yi)/h— (¥i — yi-1)/h

h

1
= 5z Vis1 — 2yi + Yi-1)

Boundary Value Problem
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1- First derivative /—W \ 3. Third derivative —_—— ’\
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EX :- The deflection equation of abeam is

d*y q(x)
dx* = EI

Where
Y=Y ¢ is the deflection
q= (per unit length) is the distributed load on beam.

El: flexural rigidity of the beam.

Consider abeam of length (L) fixed at one end and simply supported at the other end. The load on the beam is triangular as
shown.

By finite differences, obtain the deflections in the beam,

Take h=Ax=l/4
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*at node 0

Yo=2=0 Hy,=y

2h
*at node 4
constant EI
Vo= %[)’s —2y4 +ysl i;; Cu?::ure
Y. =0 and y,=0=ys=-y3 : :
Here

d'y q, x/l _q,
dx* EI _LEI"

In finite differences of i :-

1 9o .
e iz —4Yi-1 +6yi —4Yis1 + Yis2]l = 1ET X

Or constant EI

9. slope Curvature

1 .
wl (OO (OO 1=~

Apply to nodes 1,2 and 3 as follows :-

*at node 1 i1 0 1 2 3 4 5
¥ ) 7’*@4
@/a? [y-1—4y0 +6y1 —4y2 +y3l = 77 - /4

1 i
=7y1—4y2 +y3 =mq2,’ %, e (1)) 8
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//Q\\s :
_X

*at node 2 ol
1 90 | do
(L7ayt Yo~ 4y1+6y2 —4ys +yl =g/
= =4 + 6 -4 = 2A (2) 7 constant EI
Y1 Y2 Y3 ses sne sans o . i
slope Curvature
*at node 3 : -
[y — 4y, + 6ys — 4y, +ys] = 2 3L/
(L/9)* LEI = 4 :
-1 0 1 2 3 4 5
=y, —4y,+5y;=34..........(3) . ) : .
Solve these three equations Y 4= Ve = —V3
QOL4

4 4
v =1.6868x10° %2 |y, =3.4624x 1073 2=y, = 3.01847 x 1073 I
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Ex2: Find ultimate mid-span deflecti
? Use F.D.M with h=L/4 P2 P2

d'y q(x) i l
dx*  EI E
0%7 L/3 L/3 L/3

% % 4
ql 1 /|

In finite differences of i :-

-y

qix)

1
F[y.--z —4yi_1+6y; — 4Yis1 + Yis2] = I

Or

HOJOJOZOJORE -

Apply to nodes 1,2 and 3 as follows :-

*at node 1

q1(x) = concentrated load/h = (g)/h

10
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W—lw[y-l —4yo + 6y, — 4y, +y3] =%‘;

= 5y, =4y, + y;3 =L.E=A...........(1)) P/2 P/2

128 EI

*at node 2

ql(x) =0
TZ),‘ Yo —4y1+ 6y, —4y3 + y4] =0 k ¥ — -
= —4y; + 6y, —4y; =0...........(2)
*at node 3

q1(x) = concentrated load/h = (g)/h

1 p/2
Wbﬁ 4y, +6y3 =4y, +ysl = —

PE

=y, -4y, +7y3=A.........(3) Solve these three equations
11



Numerical integrations ®

Numerical Integration. CD Jal ol s
33 ala) Blal) sae ) sl aw olial J gaad) aadioi
I-The Method Of Trapezoids 2-Simpson's 1/3 Rule 3- Method of Undetermined coefficients 350a (je 2a Js c_sﬁ ey d) al e W m e
4- Gaussian Quadrature. I gad) A Jalsall
1 I3l Cn e shos Las X im g -
I= ff(t).dt: Ci.f(t) + Cz.f(t2)+~-....c,,.f(t,,> t,,t, t; optimal points /
i \_/
Number : Associated
of Points Locations, x; Weights, W;
| x; = 0.000..- 2.000
2 x1,x2 = +0.57735026918962 1.000
3 x1,x3 = +0.77459666924 148 g E (e S
X3 = 0.000... 8—-0.888...
4 x1,x3 = +0.8611363116 (0.3478548451

x2,x3 = +0.3399810436 0.6521451549 @




Numerical integrations

Three point quadrature.

ff(t) dt = 0.555 =« f(— ?774)+ 0.888 = f(0) + 055 *f 0.774)

T

Associated
Locations, x; Weights, W;

Number
of Points
| X1 = UL
2 X1,%2 = 57 35076918962
3 x1,.x3 = +0.77459666924148
x> =0.000... ;
4 xX1.x4 = +0.8611363116 0 3478548451

x2,x3 = +0.3399810436 0.6521451549




Numerical integrations

Evaluate the integrals (a) / = L'l [x? + cos(x/2)] dx and (b) I = \[_11(3-" — Xx)dx using
three-point Gaussian quadrature.

SOLUTION:
(a) Using Table 10-2 for the three Gauss points and weights, we have x| = x3 =
+0.77459..., x2 =0.000..., W) = W5 = g, and W5 = % The integral then becomes

I= (—0.77459)2 + cos<- il rad> :

2
~ §+ 0° + cos

S

8
9

oo

$ (0.77459)2+cos(0°772459 rad) g

= 1.918 + 0.667 = 2.585



Numerical integrations

(b) Using Table 10-2 for the three Gauss points and weights as in part (a), the
integral then becomes

I = [3(-0:77459) (-0.77459)]2 +[3° - 0] -g + [3%7749) _ (0.77459))

O Wi

= (.66755 + 0.88889 + 0.86065 = 2.4229(2.423 to four significant figures)

Compared to the exact solution, we have I, = 2.427. The error is 2.427 — 2.423 =
0.004. B



Numerical integrations
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Limits of integration in Gaussian Quadrature:-
1 1 1
xX= 5(b+a)+ E(b—a)t dx:i(b—a)dt . "



Numerical integrations

EX:- find the integral I= fol *_ .dx

sin x
Sol:
1 1 . e
X = —2-(b+a)+ -z-(b—a)t— E+§t
=1
dx = 2dt
L G+3t) 1 1. a+t) 4o
o’ fO sinx' &%= f—l sin(%+%t).2 . 4f-l sin 0.5(1+t) "
1 1-0.774 1+0 14+0.774
= 2 0.555 = i + 0.888 * i + 0.555 * i =
sin [7(1 - 0. 774)] sin [7 (i 0)] sin [7(1 +0. 774)]

= [1.1124 + 1.8522 + 1.2701] = 2.059
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LINEAR INTERPOLATION

\9: %i()(.‘X) +)w(X~Xo)_ V-ve  vi-V.

(X\")(o X—XO Xl—XO
Ho & e ¥olXqy = X) + WX — X5)
X1 — X
X1 | Y1
? X2 | Y2
b et
(% = x s - )
‘a' Y2 R by
X3 T X

Xo X X1 @
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Setup

Statistics

Y=a+bx

Insert data for x and y (the actual)

AC (bottom)

Enter the required number then OPTN then Regression then Y

Ex: fin the value of y when x=2.5

RS
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Given data
2
25| 5
3

y2=

yl
y2
y3

Ya =

(x,
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(%3 = x, )
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GREGORY- NEWTON FORWARD INTERPOLATION
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u &> Backward z o+ Forward
| | | | plp=1) ;>
1), +)(p+2 Y. = Yo+ pOY gt A%y
.1‘1=yn+pVyn+p(l; V‘yn+p(p )'(p )V"yn+--- | | 2! °
2! | plp=—lp=7) .
pp+l)p+2)-(pt+n-1), i 3 e
e ’ V'y +Error b T 1)
= ) = ’1 "
n + £8F - A"y, +Error
L nl '
Here p= I;x"
) o
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Ex: find the value of y at x=21 from the following data

Gl dad o i

> 5 . Y Juady Ll (e
X Y Vy Vy Vy U(:(: ;(8));: Forward Interpolation
= 4 -
20 0.342 =0.3333
0.0487
X1 23 0.3907 -0.001 e PP
) = y ) ) ————————————— )
0.0477 -0.0003 A R T
= — )
X2 126 0.4384 -0.0013 I 10t k) PR
0.0464 3!
X3 29 0.4848 LB =) L ) ARyt B
= n!
h= 3

Y(21) = 0.3420+(0.3333)(0.0487)+0.5*(0.3333)(0.3333-1)(-0.001)+(1/6)(0.3333(0.3333-1)(0.3333-2)(-0.0003)
Y(21) = 0.3583



GREGORY- NEW

Ex: find the value of y at x=

X0

X1 —

X2 —

X3 —

ON BACKWARD IN

from the following data

X Y Vy
20 0.342

0.0487
23 0.3907 -0.001

0.0477 | -0.0003
26 0.4384 i -0.0013 |

| 0.0464~
29 0.4848 |
X Jgdl (yo 28

h= 3 us -0.33333

8-29)/3
=-0.3333

ERPOLA

y. =y +pVy +

+p(p+l)(p+2)~~(p+n—l)
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MUC 2021-2022

[ON

e bl dad o B
AV Jeagy 4l

Backward Interpolation

p(p+l)v:1_ 5 p(p+1)(p+2)v; o

‘ S e

2! " 3!

® Fomnd®

n

h

p=

n!

V"y_ + Error

Y(28) = 0.484+(-0.3333)(0.0464)+0.5*(-0.3333)(-0.3333+1)(-0.0013)+(1/6)(-0.3333(-0.3333+1)(-0.3333+2)(-0.0003)
Y(28) = 0.4695
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Example: What will be the population in 1925 as per following data table

Solution

X (Year) 1891 1901 1911 1921 1931
Y(Populati | 46 66 81 93 101
on)
x y Vy VZy Vy Viy
1891 46
20
1901 66 _5
15 2
1911 81 _3 3
12 -1
1921 ‘
9‘3 .4
8
1931 101

Asst. Lect. Haider Qais
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here
VYH =8 VZYH =-4 VBYH =-1 \U}Yn =-3
Y,=101 P=(X- X;5)/h=(1925-1931)/10 =-0.6
hence
f(1925)=

101 +(-0.6)(8)+ [(-0.6)(0.4)(-4)]/12 + [(-0.6)(0.4)(1.4)(-1)]/13 +[(-0.6)(0.4)(1.4)(2.4)(-3)]14

=101-4.8+[(0.96)/2]+[(0.336)/6]+[(2.4192)/24]
=101-4.8+0.48+0.056+0.1008

—96.8368
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Syllabus

* Curve fitting Interpolations

e Curve least square regression

* Numerical integration

e System of linear equations

* Solution of non linear equations

Solution of differential equations

* Numerical solution of ordinary differential equations
* Numerical solution of partial differential equations
Finite difference method

* Foureir series



References

* Advanced numerical and engineering analysis, wylie
* Advanced engineering mathematics", erwine



Curve fitting Interpolations

Approximation and Interpolation

Suppose that by experiments or observations, the following data are
given

Xi | Vi

f(x)
Required :-y, . . for certain x
X
0 Yo x n P(x)
»
f(x)
X1 Y1 4
*
X2 Y2

X3 Y3 P(x) = fix) = i=1,2, 300, n



1-Newton's Divided Difference Formula

X, X; X,
F(x)=?  forgiven x,<x<x,
J(xp) Jfixy) f(x,)
9
P
f(.l', X0, .1'1,.1'2) = f(.l‘.‘, X0, X1) — f( Xo, X1, X2) (1) 9 ‘Jall ¢l glas
X— %2 sl JueSic
Ol gakas-
x,xp) — f(xp,%1)
f(x,x0,%,,) = A nx_ };1 St eeee(2)
_/
(x) — f(xo)
flx,xy,) = / prym iu ° cenee(3)

From above equations

F(x) = fixy) + (x —xp).flx,, X)) + (x =Xy (x —x)).f(x,, X, Xx,) + Error @



X0

X1

X2

X3

X4

Ex1: Fit the following data

X F(0) f0,1) | F(0,1,2) | f(0,1,2,3) [f(0,1,2,3,4)
13
1
1 15 1
2 1
2 13 4 0
10 1
4 33 8
34
5 67

F(x) = fixy) + (x —xp).fl(xy, X)) + (x —Xp). (x —Xp).f(xy5, X}y X3) HX —Xp). (X —X). (X —X3).f(xy, X}y X5 X3) + Error

Fx)=13+[(x-(-1))*(1)]+[(x-(-1))* (x-1)*(-1)]+[(x-(-1))* (x-1)*(x-2) *(1)]+0

F(x) =13+[x+1]+[(x+21)(x-1)(-1)]+[(x+1)(x-1)(x-2)]
F(X) =13 +Xx+1—x2+ 1 +x3-2x2=x + 2

F(x) = 17 - 3x2+ X3

X2-1



X Fix) I Ind i 4
-1 13
13-15
—f=1 1+2
i 15 -1-2 ~1-4
-1-4
15-13
12 2
1-1
2 13 —2-10 -
13-33_ 1-4
2-4 4-8
4 i3 ﬁ-
33 - 67 10— 34
= 34 =
5 67 4-5 2-5

HW: find the polynomial when X=4.5




2-Newton-Raphson method or open method

This method is commonly used because of its simplicity and great speed. If the initial guess at the root is x,,, a

tangent can be extended from the point (xﬂ,f(xﬂ)). The point where this tangent crosses the x axis usually

represents an improved estimate of the root. This method can be derived geometrically as follows (see the figure
below)

' f(xﬂ) -4
tanfd = f'(x,) = =y
x_x=f(x) i I=x—f(xﬂ)
@ T T fixo)
Or generally, A :
fxp) #0
AlaiyY) Al I saall Al I gaall Al diidia



Algorithm: Newton’s Method

1. Given a function f(x) real and continuous and has a continuous derivative.

2. Given a starting value x,(initial guess).
3. Repeat the following steps until termination:

a. Compute f(x,), f'(xy) (if f'(x,)) = 0 stop, pitfall).
b. If f(x,) = 0, then the root is x,and terminate the computation. Else,

c. Compute

f(xn)

Xn41 = Xp ——,

n+1 n f;(xn)

d. Test for termination (Termination Criteria):
i If[xm = x| <€ (€ > 0, specified tolerance)

i. IF[f(xm)| < a

iii. After N steps

(a > 0, specified tolerance)

(N, fixed)

f(xo), f'(%0)

y=f(x)

f(xl)- f’(xl:'

g

Real Root

Approximate Roots

%

®)

“Jad) ¢ glad
Al gids 5 jiall ) Aslaall 5 5l
dua g yaal) ALY dagsll (in gri-
O akai-
doalal) dunlal)
RADIAN




Ex2:

Find the positive solution of 2 sin x = x by using Newton’s Method. (Assume x, = 2.000 and correct to three
decimals, 3D)

Solution

f(x)=x—2sinx=0
f'(x) =1-2cosx

Xp — 28Inx,

S S 2¢0S Xp
n Xn Xn+1 |f (Xn+1)l Xn+1 — Xn
0 2.000 1.901 0.009 0.099
1 1.901 1.896 0.000 0.005
2 1.896 1.895 0.000 0.001
3 1.895 1.895 0.000 0.000

The root is 1. 895 because |x;, — x| = 0 and f(x;y) = 0 Ans.



The above table can be performed by using scientific calculator as follows:

[ Fix 0 ~ 9?

0.000
2

2.000
Ans-(Ans-2sin(Ans))+(1-2cos(Ans))

1.961
Ans-(Ans-2sin(Ans))+(1-2cos(Ans))

1.896
Ans-(Ans-2sin(Ans))+(1-2cos(Ans))

1.895
Ans-(Ans-2sin(Ans))+(1-2cos(Ans))

1.895

exe

exe

exe

exe

exe



Ex3: assuming c=2 and initial value is 1.5

Use Newton’s Method to find the solution of x = /C, where C is any positive number.

to find V2. (Assume x, = 1 and correct to6D)

Solution

letx* =C

f(x)=x*-C

f(x) = 2x

xf —C 1 ( C ) 1 ( N C )
X =X, — =Xy ==Xy ]| ==|X —
n+1 n zx“ n 2 n x“ 2 n xn
1 2
Xn+1 = E(xn 73 E)

n Xn+1 |f(xn+1)l Xn+1 — Xn
0 1.500000 0.250000 0.500000
1 1.416667 0.006944 0.083333
2 1.414216 0.000006 0.002451
3 1.414214 0.000000 0.000002
4 1.414214 0.000000 0.000000




The above table can be performed by using scientific calculator as follows:

" “y
Fix @ ~ 9?
0.000000
1.5
1.5600000
0.5(Ans+2+Ans)
1.416667
0.5(Ans+2+Ans)
1.414216
0.5(Ans+2+Ans)
1.414214
0.5(Ans+2+Ans)
1.414214
. o

exe

exe

exe

exe

exe



Systems of Linear
Equations:

The Gauss-Jordan Method

PEFS-EN Q.AAJJ\ dae sz_.d 2

2@ A ala




Systems of Linear
Equations:

3x—2y+8z=9
—2x+2y+ z=3




Row-Reduced Form of a Matrix

Each row consisting entirely of zeros lies below all rows having
nonzero entries.

The first nonzero entry in each nonzero row is 1 (called a leading 1).

In any two successive (nonzero) rows, the leading 1 in the lower row
lies to the right of the leading 1 in the upper row.

If a column contains a leading 1, then the other entries in that column
are zeros.

Row Operation

1. Interchange any two rows.
2. Replace any row by a nonzero constant multiple of itself.

3. Replace any row by the sum of that row and a constant multiple
of any other row.



Terminology for the
Gauss-Jordan Elimination Method

Unit Column

A column in a coefficient matrix is in unit form if one of the entries in the column
is a 1 and the other entries are zeros.

Pivoting

The sequence of row operations that transforms a given column in an augmented
matrix into a unit column.

Notation for Row Operations

Letting R, denote the /th row of a matrix, we write

Operation 1: R; <> R;to mean: Interchange row i with row j.
Operation 2: cR; to mean: replace row i with c times row i.
Operation 3: R; + aR; to mean: Replace row i with the sum of row i and a times row j.



Example

Pivot the matrix about the circled element

Solution

|
(NS) ()

(S

()




The Gauss-Jordan Elimination
Method

1. Write the augmented matrix corresponding to the linear system.

2. Interchange rows, if necessary, to obtain an augmented matrix in which the first
entry in the first row is nonzero. Then pivot the matrix about this entry.

3. Interchange the second row with any row below it, if necessary, to obtain an
augmented matrix in which the second entry in the second row is nonzero. Pivot
the matrix about this entry.

4. Continue until the final matrix is in row-reduced form.



Example

Use the Gauss-Jordan elimination method to solve the system of equations

~ ~ (@] )
SX—2y+s8z="Y

~ )
—ZX+2LV+ Z=2
A 8 C
X+2V—23Z=¢

Solution

s | YR +R,

I
INO
NS
(Jd

Toggle slides back and forth ‘
to compare before and I
after matrix changes

(N




Example

Use the Gauss-Jordan elimination method to solve the system of equations

I
N
<
_{_
(@le
AN

I
O

()

>3
_'l_
[~NO
<

I
()
N

i
(@e

Solution

@0 o] 2| R+R

2 2 1| 3| R+2R W
I 2 38 R-R

Toggle slides back and forth
to compare before and
after matrix changes




Example

Use the Gauss-Jordan elimination method to solve the system of equations

) ~ C ~
IX—2v+ez="9

) N -~
—/XF2ZV+ Z=02>
A 8 C
X+2V—27 =09

Solution

0@ 19|27 \R+2R W

Toggle slides back and forth
to compare before and
after matrix changes




Example

Use the Gauss-Jordan elimination method to solve the system of equations

Solution

Toggle slides back and forth
to.compare before: and
after matrix changes

u\"}‘z‘/—SZ
10 9

(-
I
y—
N

(-
N
=2
O

()

(e

o=
e




Example

Use the Gauss-Jordan elimination method to solve the system of equations

I
N
<
_{_
(@le
AN

I
O

()

>3
_'l_
[~NO
<

I
()
N

i
(@e

Solution
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Example

Use the Gauss-Jordan elimination method to solve the system of equations

I
)
>3
_{_
N2
v‘\‘;
_{_
[N
I
()

>3
_'l_
[~NO
<
I
()
N
i
(@e

Solution

(-
O
p_
[No

O
I

O\
I

o

(D)
[
=
=

Toggle slides back and forth o
to compare before and
after matrix changes




Example

Use the Gauss-Jordan elimination method to solve the system of equations

I
N
b
@0
IN

I
N

>3
_'l_
[~NO
<
I
()
N
i
(@e

Solution

-
O
) —
N

R -9R,

(-
)—
I
O\
I
N

-
(-
)

R, +B6R,
Toggle slides back and forth
to compare before and

after matrix changes




Example

Use the Gauss-Jordan elimination method to solve the system of equations

“~ Fa) (“,
SX—2v+ez="9
) N -~
—/XF2ZV+ Z=02>
A 8 C
X+2V—27 =09

Solution

O (O 3
-0 Y0 R-9R,

; Om ,‘ R, +6R,

Toggle slides back and forth
to compare before and
after matrix changes




Example

Use the Gauss-Jordan elimination method to solve the system of equations

Solution 10 0l3

o0 1 04
0 0 1]

The solution to the system isthus x=3,y=4,and z=1.



5.3

SYSTEMS OF LINEAR EQUATIONS:

UNDERDETERMINED AND OVERDETERMINED
SYSTEMS

X+2y—3z=-2 1 2 3| =2
x— v—2z= 1 S 1
2x+3v—5z=-3 2 3 =5 =3
x—z= 0 =z
v—z=-—1 =z—!




ﬁ

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations given by

X+2y—3z2=-2
SJ\ — ‘/’—2_/ — _‘
2‘/\ ‘}‘: V—SZ :—3
Solution m DA, —2_
) - -~ A
3 -1 2| 1 =
5 A 5| A Ry - 2R,

Toggle slides back and forth

to compare before and
after matrix changes




A System of

with an Infi

ﬁ

Equations
nite Number of Solutions
Solve the system of equations givenby
3x— v—2z= 1

Solution

Toggle slides back and forth
to.compare before: and
after matrix changes

® > | 2|rR-3R
70 7| -1k, W
1] 1| R -2R
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A System of Equations
with an Infinite Number of Solutions

X+2v—32=-27
dx— v=2z= 1
2X+3y—57=-3
Solution 1 3| - R1_2R2
» @ 1|k »
O -1 ] ]
v 1 1] R+R

Toggle slides back and forth
to compare before and

after matrix changes
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A System of Equations
with an Infinite Number of Solutions

Solve the system of equations given by

AJ‘/V—:Z —7

3x— v—2z= 1

2% +3y—5z7=-3
Solution 10 -1 0 B _op
-| - 1_ 2

Toggle slides back and forth

to.compare before: and
after matrix changes




P

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations given by

X+2v—3z=-2

Ix— v=—2z= 1

2% +3y =5z =-3

Solution

1 0 1] 0

O 1 —1| -1

O 0 0O 0

Observe that row three reads 0 = 0, which is true but of no use to us.



P

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations glven by

- )

X+ Z 2 ‘/ 7 =—7
i) ~ 1
Ax— v—2z= 1
2X+3v—57=-3

Solution
This last augmented matrix is in row-reduced form.

Interpreting it as a system of equations gives a system of two equations in

three variables x, y, and z: N _
Lo -1] 0

x-z= U 0 1 -1 -1

y-z=-1 00 0| 0




P

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations glven by

- )

X+ 2 V=20Z=—2
i) ~

Ax— v—2z= 1

2X+3v—57=-3

Solution

Let’s single out a single variable —say, z— and solve for x and y in terms of it.

If we assign a particular value of z—say, z=0—we obtain x=0and y =-1, giving the
solution (0, -1, 0).

s =(0)=0

I

x—z= 0 X

y—z=-—1 y=z-1=(0)-1=-1



P

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations given by

- )

X+ Z 2 ‘/ 7 =—7
i) ~ 1
Ax— v—2z= 1
2X+3v—57=-3

Solution

Let’s single out a single variable —say, z—and solve for x and y in terms of it.

If we instead assign z = 1, we obtain the solution (1, 0, 1).




P

A System of Equations
with an Infinite Number of Solutions

Solve the system of equations given by

X+ 2 V= Sz =2
3x— v—2z= 1
2x+3v—57=-3
Solution
Let’s single out a single variable —say, z— and solve for x and y in terms of it.

In general, we set z=t, where t represents any real number (called the parameter) to

obtain the solution (t, t — 1, t).
x—z= 0 A =

= (f) =

3

yv—z=—1 yv=z-—1=(fH)—1=r-1



A System of Equations That Has
No Solution

Solve the system of equations given by
A+ V+ Z

I

3x— v— z= /4
Xx+Sy+5z=-1
Solution 0 [
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to compare before and
after matrix changes




A System of Equations That Has
No Solution

Solve the system of equations given by

X+ v+ z=

Solution D ] 1 1_

Toggle slides back and forth
to compare before and
after matrix changes




A System of Equations That Has
No Solution

Solve the system of equations given by

X+ v+ z=

Solution 1 | ‘ 1

0 @ 4| 1| R+R,

Toggle slides back and forth
to.compare before: and
after matrix changes




A System of Equations That Has
No Solution

Solve the system of equations given by |
X+ v+ z= 1

Jx— v— z= 4

X+5y+85z=—1
Solution .

11 11

O -4 -4 1

O 0 0] -1

Observe that row three reads Ox + Oy + 0z =—1 or 0 = —1!

We therefore conclude the system is inconsistent and has no solution.

» If there is a row in the augmented matrix containing all zeros to the left of the vertical line
and a nonzero entry to the right of the line, then the system of equations has no solution.
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