On The Solution of Discrete-Time Linear Operator Equations

Ass.Lecturer Huda Abdul Satar *

ABSTRACT

In this paper, we introduce and discuss the existence and uniqueness of the solution of discrete-time Sylvester and Lyapunov operator equations. And, we study the nature of these operator equations for special types of operators.

^{*} Baghdad University, College of Science, Department of Mathematics

1-Introduction

An operator equation of the form L(X) = W,

is said to be an operator equation, where L and W are known operators define on a Hilbert space H, and X is the unknown operator that must be determined.

In the above operator equation, if the operator L is linear then this equation is called linear operator equation, otherwise, it is a non-linear operator equation.

Linear operator equations are very important in control theory and many other branches of engineering,[2].

Many authors studied the operator equation foe example Golden J. in 1978 studied the existence and uniqueness of the solution for the linear operator equation of the form

AX + XB = Q, where *A*, *B* and *Q* are known operators define on a Hilbert space *H*, and *X* is the unknown operator that must be determine, [6].

Bahatia and Rosenthal. in 1997 illustrate, the importance of the study of the previous linear operator equation,[2]. Also, in 2001 Bahatia studied a special type of linear operator equations of the form

 $A^*X + XA + tA^*XA^{1/2} = W$, where A and W are known operators defined on H, t is any scalar and X is the unknown operator,[1].

In 2005 Emad A.K. studied a special type of linear operator equations (Lyapunov equation) of the form $A^*X + XA = W$, where A and W are known operators defined on H and A^* is the adjoint of A, X is the unknown operator, [5].

2. Some Types of Linear Operator Equations:

In this section some types of linear operator equations are introduced:

I. Continuous and discrete-time Sylvester operator equations:

 $AX \pm XB = \alpha C, \qquad \dots (1)$ $AXB \pm X = \alpha C \qquad \dots (2)$

II. Continuous and discrete-time Lyapunov operator equations: $A^*X - XA = \alpha C$... (3)

 $A^*XA - X = \alpha C \quad \dots \quad (4)$

where A, B and C are given operators defined on a Hilbert space H, X is an operator that must be determined, α is any scalar, and A^* is adjoint of the operator A, [1].

In general these linear operator equations may have one solution, infinite set of solutions or no solution.

3. The Existences and Uniqueness of The Solution of The Discrete-Time Operator Equations:

Existence and uniqueness of the solution of eq.'s(2) and (4), when **B** is an invertible operator in eq.(2) and **A** is an invertible operator in eq.(4) are studied, [4].

The discrete-time Sylvester equation can be transform to continuous-time Sylvester equation as follows:

Multiply eq. (2) from the right by B^{-1} , then eq.(2) becomes:

$$AX \pm XB^{-1} = \alpha CB^{-1}$$

Let $CB^{-1} = W$, the above equation becomes:

$$AX \pm XB^{-1} = \alpha W \qquad \dots (5)$$

Also, the discrete-time Lyapunov operator equation can be transform to continuous-time operator equation as follows: Multiply eq.(4) from the right by A^{-1} , then eq.(4) becomes:

$$A^*X - XA^{-1} = \alpha W$$
, ...(6)

Recall that, the spectrum of the operator $A \equiv \sigma(A) = \{\lambda \in \mathbb{C}; (A - \lambda I) \text{ is not invertible} \}$ and B(H) is the Banach space of all bounded linear operators defined on the Hilbert space.[3].

Corollary (3.2),[4]:

If A and B are operators in B(H), and B^{-1} exist, such that $\sigma(A) \cap \sigma(B^{-1}) = \emptyset,$ then the equation operator $AX - XB^{-1} = \alpha W$, has a unique solution X, for every operator W.

Corollary (3.3)[4]:

If A and B are operators in B(H), and B^{-1} exist, such that $\sigma(A) \cap \sigma(-B^{-1}) = \emptyset$, then the operator equation $AX + XB^{-1} = \alpha W$, has a unique solution X, for every operator W.

Corollary (3.4), [4]:

an operator in B(H), A^{-1} exist such If Α that $\sigma(A^*) \cap \sigma(A^{-1}) = \emptyset$, then eq.(6) has a unique solution X, for every operator W.

Proposition (3.5): consider eq.(6), if $\sigma(A^*) \cap \sigma(A^{-1}) = \emptyset$, then the operator [A* $\begin{bmatrix} -\alpha W \\ A^{-1} \end{bmatrix}$ is defined on $H_1 \oplus H_2$ is similar to the operator 0 [*A** $\begin{bmatrix} A^* & 0 \\ 0 & A^{-1} \end{bmatrix}$ **Proof:**

Since $\sigma(A^*) \cap \sigma(A^{-1}) = \emptyset$, then by Sylvester-Rosenblum theorem, eq.(6), has a unique solution .Also $\begin{bmatrix} I & X \\ o & I \end{bmatrix} \begin{bmatrix} A^* & 0 \\ 0 & A^{-1} \end{bmatrix} = \begin{bmatrix} A^* & -\alpha W \\ 0 & A^{-1} \end{bmatrix} \begin{bmatrix} I & X \\ 0 & I \end{bmatrix}$ But $\begin{bmatrix} I & X \\ 0 & I \end{bmatrix}$ is invertible, so $\begin{bmatrix} A^* & 0 \\ 0 & A^{-1} \end{bmatrix}$ is similar to $\begin{bmatrix} A^* & -\alpha W \\ 0 & A^{-1} \end{bmatrix}$. the converse of the above proposition is not true in general.

4. The Nature of The Solution for the Discrete-Time Lyapunov Operator Equation.

In this section, we study the nature of the solution for special types of the linear operator equation, namely the discrete-time Lyapunov equation.

Remarks (4.1):

- 1. If A, A^{-1} and W are self-adjoint operators, then eq.(6), may or may not have a solution Moreover, if it has a solution then it may be non self-adjoint.
- 2. Consider eq.(6), if W is self-adjoint operator, then it is not necessarily that $X = X^*$.
- 3. If A, A^{-1} and W are skew-adjoint operators, then eq.(6) has no

Solution.

These remarks can be easily be observed in matrices. Remarks (4.2):

- **1.** If *A* and *W* are normal operators, then the solution *X* is not necessarily normal operator.
- 2. If *W* is normal operator and *A* is any operator, then it is not necessarily that the solution *X* is normal operator.

Putnam- Fugled Theorem (4.3):

Assume that $M, N, T \in B(H)$, where M and N are normal. If MT = TN then $M^*T = TN^*$.

Proof: see [7].

Recall that, an operator *M* is said to be dominant if $||(T - Z)^* x|| \le M_x ||(T - Zx)||$, for all $Z \in \sigma(T)$ and $x \in H$, [3]. Also, an operator *M* is called *M*- hyponormal operator if $||(T - Z)^* x|| \le M ||(T - Z)x||$, for all $Z \in \mathbb{C}$ and $x \in H$,[3]. Theorem (4.4),[7]:

Let *M* be dominant operator and N^* is an *M*-hyponormal operator. Assume that MT = TN for some $T \in B(H)$ then $M^*T = TN^*$.

Let *A* and *B* be tow operators that satisfy Putnam-Fugled condition. The operator equation AX - XB = C has a solution *X* if and only if $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ and $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$ are similar operator on $H_1 \bigoplus H_2$. According to above theorems, we have the following corollaries:

Corollary (4.6):

If A is normal operator and A^{-1} exists then operator equation $A^*X + XA^{-1} = \alpha W$ has a solution if and only if $\begin{bmatrix} A^* & 0 \\ 0 & -A^{-1} \end{bmatrix}$ is similar to $\begin{bmatrix} A^* & -\alpha W \\ 0 & -A^{-1} \end{bmatrix}$.

Corollary (4.7):

If A and B are normal operators and B^{-1} exists then the operator equation $AX - XB^{-1} = \alpha W$ has a solution if and only if $\begin{bmatrix} A & 0 \\ 0 & -B^{-1} \end{bmatrix}$ is similar to $\begin{bmatrix} A & -\alpha W \\ 0 & -B^{-1} \end{bmatrix}$.

The following corollaries follows directly from theorem (4.4).

Corollary (4.8):

If A is a dominant or M-hyponormal operator and A^{-1} exists, then the operator equation $A^*X + XA^{-1} = \alpha W$ has a solution if and only if $\begin{bmatrix} A^* & 0 \\ 0 & -A^{-1} \end{bmatrix}$ and $\begin{bmatrix} A^* & -\alpha W \\ 0 & -A^{-1} \end{bmatrix}$ are similar operator on $H_1 \oplus H_2$.

Corollary (4.9):

If A and B are dominant or M-hyponormal operators and B^{-1} exists. Then the operator equation $AX - XB^{-1} = \alpha W$ has a solution if $\begin{bmatrix} A & 0 \\ 0 & -B^{-1} \end{bmatrix}$ and $\begin{bmatrix} A & -\alpha W \\ 0 & -B^{-1} \end{bmatrix}$ are similar operators on $H_1 \bigoplus H_2$.

Proposition (4.10):

Consider eq.(6), if A is an orthogonal operator, A^{-1} exists and W is also an orthogonal operator, and the solution X of eq.(6) is unique then this solution is orthogonal.

Proof:

Consider the operator equation:

 $A^*X + XA^{-1} = W$

then $(A^*X + XA^{-1})^* = W^*$

Since W is an orthogonal operator $(W^* = W^{-1})$ implies that $W = (W^{-1})^*$.

$$X^*A + (A^{-1})^*X^* = W^*$$

[X*A + (A^{-1})*X* = W*]^{-1}

Since A is an orthogonal operator $(A^* = A^{-1})$

 $A^{-1}(X^*)^{-1} + (X^*)^{-1}A^* = (W^*)^{-1}$ $A^*(X^*)^{-1} + (X^*)^{-1}A^{-1} = W$ then $(X^*)^{-1} = X$, So $X^* = X^{-1}$.

Therefore, X is an orthogonal operator.

Proposition (4.11):

Consider eq.(6), if A is unitary operator and W is orthogonal operator and the solution of eq.(6) is unique then this solution is orthogonal operator.

Proof:

Consider the following linear operator equation: $A^*X + XA^{-1} = W$ $(A^*X + XA^{-1})^* = W^*$ $X^*A + (A^{-1})^*X^* = W^*$ $(X^*A + (A^{-1})^*X^*)^{-1} = (W^*)^{-1}$, $A^{-1}(X^*)^{-1} + (X^*)^{-1}[(A^{-1})^*]^{-1} = (W^*)^{-1}$,

Since A is unitary operator (every orthogonal operator is a unitary) then $A^* = A^{-1}$.

So
$$A^*(X^*)^{-1} + (X^*)^{-1}A^{-1} = (W^*)^{-1}$$

Since eq. (6) has a unique solution, then $X = (X^*)^{-1} = (X^{-1})^*$. therefore $X^* = X^{-1}$,

implies that *X* is an orthogonal operator.

Remark (4.12):

If *A* is a skew-adjoint and *W* is self –adjoint and the operator equation $A^*X + XA^{-1} = W$ has only one solution, then this solution is not necessarily a skew- adjoint or self- adjoint. Remark (4.13):

If A and W are skew-adjoint operators, the

operator equation $A^*X + XA^{-1} = W$ has only one solution then this solution is not necessarily self-adjoint.

These remarks can be easily seen in matrices.

5-Conclusion:

In this paper conclude :

-The nature of the solution depend on the known operators .

-The existences and uniqueness of the operator equation depend on (for special cases) the type known operator (dominant operator, *M*-hyponormal operator, normal operator,...).

References:

- [1] Bahatia, R. and Sner, L. "*Positive Linear maps and Lyapunov equation*", Operator Theory: Advances and Applications Vol. 130, pp. 107-120, (2001).
- [2] Bahatia, R. and Rosenthal, P.,"How and Why to solve the operator equation AX XB = Y ", Bull-London Math. Soc., Vol.29, pp.1-12, (1997).
- [3] Berberian S.K., "*Introduction to Hilbert Space* "Oxford University Press, Inc., New York, (1961).
- [4] Emad A.K.," *Solution of Operator Equation* ", Journal of Al Nahrain, University-Science, Vol. 10. No. 2,(2007).
- [5] Emad A.K. "About the solution of Lyapunov equations ",Ph.D. thesis Al-Nahrain University, (2005).
- [6] Goldstein J.A. ,"On the operator equation AX + XB = Q" proc. Amer. Math. Soc., Vol 70, pp.31-34,(1978).
- [7] Radjabalipour, M.," An extension of Putnam –Fugled theorem of hyponormal operators", Math .Z, Vol.194, pp. 117-120, (1987).

Huda Abdul Satar

حول حلول المعادلات الخطية المتقطعة المؤثرة م. م. هدى عبد الستار* المستخلص

في هذا البحث قدمنا وناقشنا وجود ووحدانية الحل لمعادلات ليبانوف وسلفستر المتقطعة المؤثرة. كما تم دراسة طبيعة الحل لتلك المعادلات المؤثرة لانواع خاصة من المؤثرات.

* جامعة بغداد - كلية العلوم - قسم الرياضيات