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Abstract :

The task of digital image compression has been the subject of several studies
over the past decades. Wavelet transform requires filters that combine a
number of desirable properties, such as orthogonality and symmetry.
Advances in such transform have produced algorithms capable of
outperforming in several application of image processing. In addition,
Multiwavelets transform has showed promise in removing some of limitations
of wavelet. The features of Multiwavelet transform open the way for the
application to image compression. These may provide much (greater
performance than these developed using discrete cosine transform (DCT).
Also, there are several methods of computation for Multiwavelet transform,
different from scalar wavelet systems in requiring two or more input streams to
the Multiwavelet filter bank. Two methods (Mixed and matrix approximation) for
computing the Multiwavelet transform are studied.

This research attempts to give a recipe for selecting two proposed image
compression algorithms based on Multiwavelet approaches, as well as to make
comparison of these approaches on color images (256 x 256).

After testing several methods of Multiwavelet transform computation for image
compression, the mixed method was chosen. This is because the other method
introduces more complexity of computation. In data compression applications,
one is seeking to remove redundancy not to increase it. Such implementation
shows that this transform method gives much better performance. In addition
to that it (Multiwavelet) gives a better reconstructed image quality and data rate
using the same quantization matrix and in terms of complexity. It was shown
that the compressed color image using Multiwavelet transform possesses %80
of compressed image . Therefore the Multiwavelet transform can support a low
loss of resolution of reconstructed images which is a desirable feature.
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1. Motivation of Multiwavelet

In a Multiwavelet transform, the balancing order of the multiwavelet is
indicative of its energy compaction efficiency (usually a higher balancing order
implies lower mean-squared-error, MSE, in the compressed image). But a high
balancing order alone does not ensure good image compression performance.
Filter bank characteristics such as shift-variance, magnitude response,
symmetry and phase response are important factors that also influence the
MSE and perceived image quality.

As in the scalar wavelet case, the theory of Multiwavelets is based on the idea

of multiresolution analysis (MRA). The difference is that Multiwavelets have
several scaling functions. The standard Multiresolution has one scaling
function. The translates are linearly independent and produce a basis of the
subspace [1].

Multiwavelets have several advantages in comparison to scalar wavelets . Such
features as short support, orthogonality, symmetry, and vanishing moments
are known to be important in signal processing. A scalar wavelet cannot
possess all these properties at the same time . On the other hand, a
Multiwavelet system can simultaneously provide perfect reconstruction while
preserving length (orthogonality), good performance at the boundaries (via
linear-phase symmetry), and a high order of approximation (vanishing
moments). Thus Multiwavelets offer the possibility of superior performance for
image processing applications, compared with scalar wavelets [1].

2. One-Dimensional Signal Processing With Multiwavelet Filter
Banks

The low pass filters H and high pass filter G consists of coefficients
corresponding to the dilation equation and wavelet equation. The four
coefficients for each filter in equations (1) and (2). But in the Multiwavelet
setting these coefficients are by matrices, and during the convolution step they
must multiply vectors (instead of scalars).
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The scaling function for the Geronimo-Hardin-Massopust (GHM) is shown in

figure (1) This means that multifilter banks need n input rows. We will consider
several ways to produce those rows. In this section the signals are 1-D[2].
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fig.(1). Geronimo-Hardin—-Massopust pair of scaling functions.
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There are four remarkable properties of the Geronimo-Hardin-Massopust
(GHM) scaling functions:

They each have short support (the intervals [0, 1] and [0, 2]).

Both scaling functions are symmetric, and the wavelets form a symmetric
/anti symmetric pair.

All integer translates of the scaling functions are orthogonal.
The system has second order of approximation [1].

3. Preprocessing for Multiwavelet

The approach is to first split each row or column into two half-length signals,
and then use these two half signals as the channel inputs into the multifilter.

A naive approach is to simply take the odd samples for one signal and the
even samples as second signal. It is generally presumed that image data will
be locally well-approximated by low-order polynomials, usually constant,
linear, or quadratic. The highpass filters are designed to a uniformly zero
output when the input has this form. Taking alternating data points as the filter
input alters the character of the input signal; hence the filter output will no
longer be forced to zero, reducing compression performance. But there is a
way around this problem: one may first pre filter the two half-length signals
before passing them into the multi filter.[3]

The pre filter step adjusts the input signal properties so that one scalar signal
is split into two half- signals in such a way that the orders of approximation
built into the multi filter are utilized. The pre filtering is generally performed by
taking the two signals as a 2*N matrix (where the original 1-D signal has length
2N) and then left multiplying by one or more 2x2 prefilter matrices. We note
that the earlier methods have some limitations such as being tied to a specific

multifilter or reauiring more than one prefilter matrix [4]
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4. General Procedure for Computing DMWT Using A Critically
Sampled Scheme of Preprocessing: (CSMWT)

A general procedure can be made for computing a single-level 2-D discrete
multiwavelets transform using GHM four multifilters and using a critically-
sampled scheme of preprocessing (approximation-based scheme of
preprocessing) .By using a critically-sampled scheme of preprocessing
(approximation-based scheme of preprocessing), the DMWT matrix has the
same dimensions of the input which should be a square matrix N*N where N
must be power of 2 . Transformation matrix dimensions which should be equal
to image dimensions after preprocessing will be

N*N for a critical-sampled scheme of preprocessing.
There are two orders of approximation types of critically-sampled

preprocessing 1st order 2 " order approximations. For the using GHM scaling
function graph values for ¢1(1/2), @2 (1/2), 2(1) and @2 (3/2) should be found
for first order approximation. For any N*N image matrix and using equation
for 1% order approximation-based

preprocessing can be summarized as follows where every two rows generate
two new rows:
a- For any odd row,

_f,(®samenddrow]- f ,(1/ 2)[nextevenrow]-  ,(3/2)[ prevousevenrow] 3
i 0 W2)

newoddrow

b- For any even row,

sameeven row
new evenrow =————— (4)

f,(D

It can be seen that the values of ¢l (t) and @2 (t) are non-zero for t
Values of [0, 2]. Since these functions are generated from a 256 sample then:
1. @1 (1/2) = the 64" value in the iterated vector of @1,

2. @2 (1/2) ¥ the 64" value in the iterated vector of @2 = @2 (3/2),
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3. 92 (1) =the 128" value in the iterated vector of P2 .

substituting values of @1 (1/2), ¢2 (1) and @2 (1/2) in Equations (3) for 1" order
approximation results,
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new odd row = ((0.373615) sameodd row] - (0.110861B)[ nextevenrow] -
(0.110861FB)[ previosevenrow]) (5)

( new even row = (V2 - I)[same even row] (6)

for 2" order approximation, the Equations becomes,

new odd row = ((10 / 8+/2) [same odd row] + (3 / 8\/5) [next even row] +
(3/8+/2 ) [previous even row] ) @)

new even row = [same even row] (8)

It should be noted that when computing the first odd row, the previous even-
row in Equation (5) is equal to zero. In the same manner, when computing the
last odd row.

the next even-row in Equation (5) is equal to zero. The same thing is valid for
Equation (7). It is obvious now why the dimension of the resulting matrix after
approximation-based preprocessing has the same dimension as before
preprocessing.

The following procedure for computing DMWT using approximation-based
preprocessing is valid for both 1°' and 2" order of approximation with one
exception of using Equations (5)and (6) for 1°' order approximation
preprocessing step and Equations (7) and (8) for 2" order approximations
preprocessing step:

1. Checking image dimensions: Image matrix should be a square matrix, N*N
matrix, where N must be power of 2. So checking input image dimensions is
the first step of the transform procedure. If the image is not a square matrix
some operation must be done to the image like resizing the image or adding
rows or columns of zeros to get a square matrix.

2. Constructing a transformation matrix: Using the transformation matrix
format, an N/2*N/2 transformation matrix should be constructed using GHM
After substituting GHM matrix filter coefficients values an N*N transformation
matrix results with same dimensions of input image dimensions after
preprocessing.
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3. Preprocessing rows: Approximation-based row preprocessing can be
computed by applying Equations (5) and (6) to the odd- and even-rows of the
input N*N matrix respectively for the 1° order approximation preprocessing.
For 2" order, approximation preprocessing can be computed by applying
Equations (7) and (8) for preprocessing odd- and even-rows of the input N*N
matrix respectively, Input matrix dimensions after row preprocessing is the
same N*N.

4. Transformation of image row.

a. Apply matrix multiplication to the N*N constructed transformation matrix
by the N*N row preprocessed input image matrix.

b. Permute the resulting N*N matrix rows by arranging the row pairs 1,2 and
5,6 ...,N-3,N~2 after each other at the upper half of the resulting matrix rows,
then the row pairs 3,4 and 7,8,..., N-1,N below them at , the next lower half.

5. Preprocess columns: repeat the same procedure used in preprocessing
rows,

a. Transpose the row transformed N*N matrix resulting from step 4.

b.Repeat step 3 to the N*N matrix (transpose of the row transformed N*N
matrix) which results in N*N column preprocessed matrix,

6. Transformation of image columns : transformation of image columns is
applied next to N*N column preprocessed matrix as follows:

a. Apply matrix multiplication to the N*N constructed transformation matrix
by the N*N column preprocessed matrix.

b. Permute the resulting N*N matrix rows by arranging the row pairs 1,2 and
5,6 .... N-3, N-2 after each other at the upper half of the resulting matrix rows,
then the row pairs 3,4 and 7,8,.... N-I, N below them at the next lower half.

7.The Final Transformed Matrix: to get the final transformed matrix:

a. Transpose the resulting matrix from column transformation step.
b. Apply coefficients permutation to the resulting transpose matrix.

The final DMWT matrix using approximation-based preprocessing has the
same dimensions, N*N, of the original image matrix.
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Figure (2) show the color image And the final image after doing Multiwavelet
transform by using CSMWT algorithm .

Fig (2) A- Original Image, B — Transformed Image

5. Algorithm For Computing Discrete Multiwavelets Mixed
Transform

Since Multiwavelet decompositions produce two low-pass subbands and two
highpass subbands in each dimension, the organization and statistics of
multiwavelets subbands differ from the scalar wavelet case. A closer
examination of the differences suggests a method for improving the
performance of multiwavelets in image compression applications. During a
single level of decomposition using a

scalar wavelet transform, the 2-D image data is replaced with four blocks
corresponding to the subbands representing either lowpass or highpass in
both dimensions.

For an 8x8 matrix transformed by the case of scalar wavelets, the 1% level of
image (2-D Signal) decomposition partitions image data into four sub-bands
labeled as LL, HL, LH, and HH, as shown in Figure (3). The lowpass quarter
image is a single subband. But when the Multiwavelet transform is used, the
guarter image of lowpass coefficients is actually a 2x2 block of subbands .
Due to the nature of the preprocessing and symmetric extension method, data
in these different subbands becomes intermixed during iteration of the
multiwavelet transform. The intermixing of the multiwavelet lowpass subbands
leads to suboptimal.

10" Scientific Conference 24-25 Oct.2009 2009 J ¥ s 25-24 diladl —aladl jaigal)



AL-Mansour Journal / No.14/ Special Issue /( Part One) 2010 (ds¥ sl )/ oA [14a | ) palal YA

L ﬁ i L =] i
LL{ HL,
1L, HL,
]2t Ind | LH}P HHR
m  Original e & o N
Image LH,| HH
L 1) L & ) &

Fig (3) the two steps of decomposition of wavelet

Since these four LL subbands of the multiwavelet transform possess different
statistical characteristics, mixing them together using the Multiwavelet mixing
transform or decomposition results in further subbands with mixed data
characteristics. This implies that typical quantization schemes that assume
the statistics in each subband are either lowpass or highpass will not give the
best possible results.

For image compression process, transform is applied as a first stage in
compression process to be followed by quantization step which operates on
transform stage output matrix which should be, as much as possible, suitable
for much simplification in quantization step.

All previously mentioned methods for computing discrete Multiwavelet
transform partitions transform image matrix to the basic Multiwavelets

subbands. Subbands values are statically different that for a good
compression to occur, each subband needs its own quantization matrix which
complicates compression process . and increases computations complexity of
the process. Therefore, Mixing transform methods are used for most
compression processes. Mixing transform results in a mixed subband matrix
which is statically similar and yet further simplify quantization process .

6. General Procedure for Computing DMWT Mixed Orthogonal-
based tansformation:( MOMWT)

The following procedure for computing DMWT using an approximation-based
Preprocessing is valid for both 1% and 2" order of approximation with one
exception of using Eqs (5)and (6) for 1°' order approximation preprocessing
step and Eqgs. (7) (8) for 2" order approximations preprocessing step:
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1. Checking image dimensions: Image matrix should be a square matrix, N*N
matrix, where N must be power of 2. So checking Input image dimensions is
the first step of the transform procedure. If the image is not a square matrix
some operations must be done to the image like resizing the image or adding
rows or column of zeros to get a square matrix.

2. Constructing a transformation matrix: Using the transformation matrix
Format, an N/2*N/2 transformation matrix should be constructed using GHM.

After substituting GHM matrix filter coefficients values as given by an N*N
transformation matrix results with the same dimensions of input image
dimensions after preprocessing.

3. Preprocessing rows: Approximation-based row preprocessing can be
computed by applying Equations. (5) and (6) to the odd- and even-rows of the
input N*N matrix respectively for the 1% order approximation preprocessing.
For 2" order approximation preprocessing, Equations (7) and (8). For
preprocessing odd- and

even-rows of the input N*N matrix respectively. Input matrix dimensions after
row preprocessing are the same N*N.

4. Preprocess columns
a. Transpose the row preprocessed N*N, matrix resulting from step 3,
b. Repeat step 3 to the N*N matrix (transpose of the row preprocessed N*N
matrix).
c. Transpose the resulting matrix from step b which results in a N*N
column preprocessed matrix
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5. Apply Transformation: by multiplying the transformation matrix by the
preprocessed matrix by the transpose of the transformation matrix- This
multiplication of the three matrices results in the final discrete Multiwavelets
transformed mixed N*N matrix.

(E)

Fig (3) A- The original image B - The Transformed image .

7. Gray scale Image Compression

A digital gray scale image is typically represented by 8 bits per pixel (bpp) in its
uncompressed form. Each pixel has a value ranging from 0 (black) to 255
(white). Transform methods are applied directly to a two dimensional image by
first operating on the rows, and then on the columns. as shown in figure (4).
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Fig (4) flowchart for Gray scale Image Compression

8. Colour Image Compression

A digital colour image is stored as a three-dimensional array and uses 24 bits
to represent each pixel in its uncompressed form. Each pixel contains a value
representing a red (R), green (G), and blue (B) component scaled between 0
and 255-this format is known as the RGB format. Image compression schemes
first convert the color image from the RGB format to another colour space
representation that separates the image information better than RGB.
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In this paper the colour images are converted to the luminance (Y),
chrominance-blue (Cb),and chrominance-red (Cr) colour space. The luminance
component represents the intensity of the image and looks like a gray scale
version of the image. The chrominance-blue and chrominance-red components
represent the color information in the image. The Y, Cb, and Cr components
are derived from the RGB space by the following relations [5].

Y = 16+65.481 *R + 128.553* G + 24.966 *B 9)
Cb =128 -37.797 -R=-74.203 - G + 112 *B (10)
Cr=128+112 -R-93.786 - G - 18.214 *B (11)
~ Coder |[—» 0\::,(
Image Cb = Coder [— E:Lljat ImOEL:J%;e
™ Cr Coder > Eijrt

Fig (5): Block diagram of the colour image compression.
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Fig (6): Block diagram of the colour image compression using Multiwavelet algorithm.
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9. Quantization:

Quantization process was to extract the coefficients of transformed image .the
guantization discarded a few number of coefficient that have a higher energy
(the important features).where the residual coefficient was truncated by the
threshold. In the compression the quantization is important because the aim of
compression was to eliminate the redundancy data in image. So that the
guantization is very useful in image compression [6].

The transformed image The quantized image

Figure (7) Converting from transformed to quantized image
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@ Table (1) quantization matrix
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Figure (8): flowchart of quantization

the segment of transformed image 8x8 in Multiwavelet with adaptive method)
by a certain value of that matrix, after the division ,rounding the result of
guantization. Some of these results can become zero after rounding. This is the
step where picture information is lost. This is called quantization and the
factors are provided by a quantization matrix. Fig (7) shows the information of
image to be quantized.
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10. Zig Zag quantization

Quantization of the recent research on image compression depends on the
DCT quantization .For this reason we used the quantization matrix of 8x8 is
used. The process is made by doing point

product (product point by point). e
Table (2): zigzag sequence

_’71 / 7 %3 :j:_»’ls ? ; ‘,;2 / TR /
VAL AL “
A A i

/1 28 x4 il /40 f4 f% Zan L i e
0/19)@3 22/39 /’5/¢224 |
A ==
35 M6 48 _59/‘;7 !;Z |

Fut the result [ uniform
e of data ) binary data

in file

Figure (9) flowchart for zigzag
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11. Huffman /Run-length Coding

The popular coding method for image is the Huffman coding. When coding the
symbols of an information source individually, Huffman coding yield the
smallest possible number of code symbols per source symbol. Huffman coding

depends on two observations:

1. The symbols that occur less frequently will have the same length for the

number of bits.

2. Symbols that occur more frequently will
have shorter coding for the number of
bits.

The first step in Huffman’s approach is to create

a series of source reductions by ordering the
probability of the symbols under consideration
and combining the lowest probability symbols
into a single symbol that replaces them in the
next source reduction.

The second step in Huffman’s procedure is to
code each reduced source, starting with the
smallest source and working back to the original
source. The minimal length binary code for a
two symbol source, of course, is the symbols 0
and1l [4].

the figure (10) show the procedure of the
encoder.

Every pixel is mapped onto a variable-length bit
string according to a probability table.

Enter the vector to
e encoxd ed

w

Compare the DC
coetTicicnt with talile of
I e es

k

Compare the AC
coellcients will lable of
AC codes

k3

Put the result { uniform
ype of data ) binary data
in file

Fig (10) flowchart for Huffman encoder
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12. PSNR

Peak signal-to-noise ratio (PSNR) is the standard method for quantitatively
comparing a compressed image with the original. For colour images, the
reconstruction of all three colour spaces must be considered in the PSNR
calculation. The MSE is calculated for the reconstruction of each colour space.
The average of these three MSEs is used to generate the PSNR of the
reconstructed RGB image (as compared to the original 24-bit RGB image). The
color PSNR equations are as follows [5]:

2532
PSNR = 10log ——— (12)
MSEpcp

MSEged + M5Epjue + MSEgreen

MSERGB = . (13)

13. Eight tests of the proposed compression method:-

After considering eight different color images given in Figure (11)
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Fig (11] the different Images,
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Fig(12) the decompressed Images,
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Pic No. File Size CRin CR in MOMWT
CSMWT
Table 1 192kB 4.547 5.313 (3) the
2 191kB 4.106 4.823
3 190kB 4.342 4.941
4 191kB 4.377 4.996
5 190kB 4.226 4.817
6 192kB 4.368 5.322
7 192kB 4.608 5.333
8 192kB 4.554 5.139
Average 191.25 4.391 4.934636

compression ratio by both multi wavelet transform algorithm.
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the eight images given in fig (11) have some property. The type selected of
images was color image (24bit).where the size for all images as in table (11)
was 192 KB. The stability for these two main properties with the different
compression result of image leads to studies these different. There are the

Pic No. MSE SNR PSNR(db) MAE

third shared property was the dimension of images (256 X 256) pixels. The

dimension of given images must be 2" . The obtained results from the first
step are comparison for the compression ratio to both the Multiwavelet
transform algorithms. The results of compression in size of output file.

As can be shown in table (3) it is clear that the Multiwavelet by MOMWT
algorithm give much better compression ratio in comparison with Multiwavelet
transform by CSMWT algorithm. On average for the eight pictures given in
figure (11) the Multiwavelet compression ratio of MOMWT is (4.934636) while
for Multiwavelet in CSMWT is (4.391).

The best compression was achieved in the case image 7 . The minimum CR
was with image 2.

Table (4) the results of measure distortion in Multiwavelet transform using

CSMWT.
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1 0.88489223 1.314168 28.661900 68.983109
2 0.99518688 1.543696 28.151757 79.226761
3 0.85001409 1.600319 28.836542 68.851791
4 0.79286393 1.709510 29.138817 60.256561
5 0.82.581863 1.680028 28.961957 66.956924
6 1.14163321 1.320443 27.555538 89.821838
7 1.04388062 1.264654 27.944295 85.696533
8 1.32982178 1.185271 26.892869 109.948792
Average | 0.9913604709 | 1.51436436 | 28.23503009 78.49701809

It was found that the Multiwavelet MOMWT gives a better compression ratio.
As in table (4) the measurement of distortion was showed.

Ratio is achieved with the Multiwavelet transform using critical sampling
schema as can be seen as in table (4) the measurement of distortion was
showed. Where the Table (5) the results of measure distortion in Multiwavelet
transform using mixed orthogonal algorithm. As in table (5) the measurement
of distortion was showed.

Where the Table (5) the results of measure distortion in Multiwavelet transform
using mixed orthogonal algorithm. As in table (5) the measurement of

distortion was showed.
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Table (5) The results of measure distortion in Multiwavelet transform using MOMWT

Pic No. MSE SNR PSNR(db) MAE
1 0.62906276 | 1.848619 | 30.143864 41.102478
2 0.81441321 | 1.886347 | 29.022356 59.061096
3 0.72453366 | 1.877475 | 29.530218 54.643433
4 0.61921825 | 2.188904 | 30.212366 42.862885
5 0.45360602 | 3.058598 | 31.564016 33.690933
6 1.09327855 | 1.378845 | 27.743495 83.827774
7 0.72375466 | 1.824027 | 29.534890 49.228668
8 0.74280703 | 2.121950 | 29.422044 46.401657
Average | 0.7474840 | 2.0760799 | 29.548987 | 53.2533636
14. Conclusions
In this research, several conclusions based on the proposed image

compression method will be given. These conclusions are based on 8 color
images, with different frequency contents, compressed at different
compression ratios using the Multiwavelet transform algorithms. The
conclusions are as follows.

1. The method of computation of Multiwavelet transform is essential. To keep
the transform in-expensive, it must be looking for the mathematical operation.
the Multiwavelet transform by MOMWT is implemented faster than CSMWT. The
Multiwavelets have smooth basis functions under all integer shifts and they
have relatively better magnitude characteristics.

2. This analysis shows that shift-invariance and desirable magnitude response
characteristics are the most significant determinants of image compression
performance for the Multiwavelets tested. A departure from shift-invariance
and ideal magnitude response produces checker boarding and tiling artifacts
in the compressed image. Short reconstructions filters are essential to
minimize the ringing artifact. Further, a good symmetric extension technique is
necessary to avoid border artifacts.

10" Scientific Conference 24-25 Oct.2009 2009 J¥ Cp sl 25-24 jdilad) —alell jaligal)



Mustafa S. Mustafa Ahas rlua b s

3. The best Multiwavelet PSNR results for MOMWT algorithm fall short of the
best Multiwavelets for CSMWT by 0.2-0.7 dB This performance gap is explained
by the difference in their energy compaction efficiencies. In general The
Multiwavelets have a higher vanishing orders. So we expect that higher order
Multiwavelets will outperform their scalar counterparts in image compression
applications of wavelet transform.

4. For most images the proposed scheme improves the perceived image
quality for the Multiwavelet at low bit rates although the corresponding PSNR
values are for these algorithms lower by 0.2-.0.8 dB. Furthermore, the
Multiwavelet decomposition model outperforms JPEG2000.
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