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ABSTRACT |’

Simulated annealing algorithm is a recent powerful technique for solving
hard problems. Furthermore, If has a very interesting features: general
applicability. In fact, it has been used successfully for solving many NP-

| Complete Problems.

This paper describes elementary theoretical concepts and Principles of
this technique and presents. As well, some examples with results in witch
simulated annealing algorithm is used to solve hard problems.

Key words : Simulated annealing, NP-Complete, heuristic, algorithms.

1. Introduction;

In technological systems, the combinatorial Optimization
problem ( minimization or maximization) is often posed,
Unfortunately, many of those problems are NP-Complete
[1] [2] whose complexity in terms of computation time or
memory size maybe intended ( exponential complexity ).
This problem stands even there exist several algorithms
that solve the same problem using different time and space
complexity consequence of the trade off between time
space [14]. Besides. If a problem is to be solved, one of
two classes of algorithms, implied by two different
approaches, may be exclusively involved [3]:
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a. Optimization algorithms: this class of algorithms
means to get the exact best solutions (s), at the risk
of very large computation time depending on the
problem size. The enumeration or exhaustive
algorithms, which pick the best solution by visiting
all possible solutions, are an example of this class.

b. Approximation (heuristic ) algorithms: these
algorithms go for quickly obtainable solutions but
not necessarily the global optimum. It may be sub-
optimal. Local search ( hill climbing ) algorithm
[1Z1, which accepts only solutions that improve the
object function. Nevertheless, it may return a non-
global optimum solution if the objective function
IS non-convex..

Simulated annealing (SA) technique [4] is a very
general method inspired from statistical physics and
successfully used in optimization problems. In general,
it behaves as an approximation algorithm but well
choosing its parameters can give in most cases
promising solutions.

The main interest of this paper is to present the SA
algorithm and to give some examples of its application
with particular emphasis on parameter choosing. This
paper is organized in two parts. The second section is
theoretical presentation of the SA algorithm in which
statistical basics that guarantee the convergence of the
algorithm are discussed without encountering long
calculations. Instead only results that interest the
programmers are given. In the third section,
programming techniques are presented as well as some

paper.
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11 SA ALGORITHM

There exists an analogy between a physical looking

for lowest energetic states and a combinatorial
optimization process [5]. In this section a brief
description of the physical process is presented firstly.
Further. The algorithm’s principles and basics are
discussed.

1.

Thermal Annealing

The SA algorithm originated from a physical
thermal process called annealing ; used to obtain
minimum energy crystalline structure of a metal. It
1s a two-step process [4]:

- The temperature is increased until the solid is
softened and particles are arranged randomly,
the temperature should be sufficiently high.

- The temperature is decreased carefully until
particles arrange themselves in the ground
state. The cooling should be sufficiently slow.

Indeed, a double dynamic is contemplated : first,

seeking for minima at fixed temperature; second,

decreasing the temperature..

The process of temperature decreasing allows the

system to search attraction pools relatively large

at the beginning, as well as to avoid being
attracted by local minima.

Sinmiulated Annealing Technique
The aforementioned analogy between the way in
which a metal cools and the search for a minimum'

'Minimum is used by default with out loosing generality,
because a maximization problem can be easily translated into
a minimization problem.

- (30)
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In a combinatorial problem can be summarized in
the following equivalences [3]:

2.1

Solutions in the optimization problem are
equivalent to states ( different configurations )
of a physical system.

The cost of a solution is equivalent to the
state energy.

In addition, a parameter called control
parameter is introduced in order to represent
the temperature.

Theoretical Concepts of SA

In spite of the similarity between the SA
algorithm and the hill climbing heuristic [13].
The former is somewhat more advantageous.
[t has the ability to escape from local minima.
Indeed, because a random search is employed,
not only changes that principal is referred to
as Metropolis criterion [6]. Furthermore.
Convergence conditions and results from
quantitative analysis derived for the SA are
based on the ergodicity hypothesis.

a. Metropolis Criterion

Let f denotes an objective function of a
combinatorial optimization problem.
Given two solutions 7. j with costs f(7). f(i)
respectively. The Metropolis criterion
determines whether ; is accepted from i
by applying the following acceptance
probability [3]:

(31)
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J 1 if £(3) < (i)
P {acceptj } =3 rwn-rn (1)
le ¢ if 1)) > f(i)

Where ¢, positive non-null real. Denotes the
control parameter.

b.  Ergodicity Hypothesis
A physical ~many-particle system is
compatible with a statistical ensemble. And
the corresponding ensemble  averages
determine the averages of observable of the
physical system then a number of useful
quantities can be derived for the system at the
equilibrium [7] [3].
This hypothesis, in statistical physics, is used
to derive some interesting results and allow
an analytic evaluation of statistical quantities
( average, spreading.. ) .
By analogy, all results of equilibrium
statistics of a physical system can be applied
to the SA algorithm.

c.  Acceptance Ratio
Some generated solutions are not accepted,
because of the acceptance probability. Then a
ratio of acceptance is defind in function of the
control parameter as follows [3]:

number ofaccepted transitions
Ac) = (2)

number of proposed transitions

¢
Asresult: 0< % (C) <1,VC.

(O
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d.  Average Cost and Spreading Cost
For each value of the control parameter ‘¢’ a
number of iterations "L’ is evoked Numerical
values of the average cost f ( ¢) and of the
spreading of the cost o, are calculated from
the following expressions [3]:

1<
f(¢)=Z;f-(c) (3)

and

[ L see
o(c)= \/%Z(fl(c) _F (o) (4)

2.2 Implementation Techniques

The SA algorithm can be implemented in a general
manner. Although, a set of specific elements must
be provided with each implementation [8][9]:

- Representation of possible solutions.

- Generator of random changes in solutions.

- An acceptance criterion.

- An annealing schedule.

General Structure of the SA Algorithm
The process consists of three parts, initialization and two
nested loops, as shown in the basic structure of the

algorithm in Figure 1.
The initialization phase is achieved in three non-ordered
steps:

(33)
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- Generating an initial solution ( randomly in general) .
- Estimating an initial value of the control parameter
( temperature).
- Estimating a number of loops to attend equilibrium at a
fixed temperature.

The two nested loops are consequence of the double
dynamic used in the thermal annealing process.

The inner loop applies the Metropolis criterion
( decision N” 8 in Figure 1 ) on a generated solution. It
holds for a fixed value of temperature determined in the
outer loop.

The outer loop is iterated while a stop criterion ( decision
N°7 in Figure 1) is not true.

In the algorithm, solutions are assessed via the objective
function ( in procedure N° 4 in figure 1).

(34)
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Each of operations used will be discussed in the

following.

Initialize parameters
- Generate an initial solution.

- Estimate the initial temperature..(1).
- Estimate initial number of transitions
L at a fixed temperature—(2).

e

T~

NO

r_-—.—- \IS‘L/
Y\"ES
chncratc new solution «-(3). l
v
( Assess new solution --(4 ).AJ

Y

Accept
solution? -«§) .-~

Tves

[ Update solution —(5). J
[<

|

Y

I Estimate New length L __(2);J

Y
' Decrease iemperature --(6).J

Ives
M

(=)

Figure 1 Structure of SA algorithm
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B.

Solution Representation

The way in which solutions are represented in problem-
specific, i.e. for a given optimization problem a
solution structure is adopted. In general, the most
obvious representation of the solution is usually
appropriate.

The solution representation imposes a neighborhood
structure. It defines for each solution a set of close
(neighbor ) solutions; i.e. it determines a topology for
solutions.

Generation of New Solutions
The mechanism of generating a new solution from a
given solution (procedure N° 3 in figure 1 ) should
satisfy the following requirements:
- Generated solution should be a neighbor of
the given solution.
- New solution is obtained by introducing small
random changes in the given solution [9].
- All possible solutions should be reachable [9].
The generation mechanism is problem-specific.
Because it should be, obviously, compatible with
the chosen representation.

Acceptance Criterion

A rule, which determines whether to accept a generated
solution, based on the Metropolis criterion is provided (
in procedure N° 4 in Figure 1 ). It can be defined as
follows:

Given two solutions i and j, and let / denotes the
objective function, then

If /(7)) <f(i) then acceptj

(36)
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else
=1

if ¢ < >r then accept]

Where ‘¢’ is the value of the control parameter and ‘r’
is a random number generated from a  uniform
distribution on the interval [0,1].

Note that at large values of c¢. large number of non-
improving solutions is accepted, but as the value of ¢
approaches 0 non-improvement transitions will not be
accepted at all. This feature explains why the SA
compared to local search algorithms. Can avoid being
trapped by local minima.

E.  Cooling Schedule
Search in SA algorithm is guided by a mechanism
called the cooling schedule. It is extremely important
because it specifies the set of parameters that govern
the convergence of the algorithm. In fact, the
convergence will be guaranteed if those parameters are
well chosen.
Determination of values-of parameters is a result of the
analogy between thermal annealing and SA and of the
quant-itative analysis based on ergodicity hypothesis.
The cooling schedule should specify the following [3]:
e A finite sequence of values of the control parameter:
- An initial value ( procedure 1 ).
A decrement function for decreasing the value
of the control parameter ( represented by
procedure N° 6 in Figure 1 ).
- A final value of the control parameter
specified by a stop criterion ( represented by
procedure N°7 in figure 1 ).

(37)
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E.l

A finite number of transitions at each value of the
control parameter ( represented by procedure N° 2
Figure 1).
Initial Value of the Control Parameter
The acceptance ratio { equation 2 ) is,
generally, the means of finding the initial
temperature [3] [8] [9] [10].
An efficient and simple procedure ia as
follows[3]:
- The acceptance ratio is set to a fixed initial
value Aclose to 1.
- Generate a number m, of trials. Let m, the
number of cost-decreasing trials and
My=mg.ny.
Calculate Af the average difference in cost-
ircreasing trials ( i.e.in m; trial).
Calculate the initial value of the control
parameter using the following expression ;

max (O,Z&?)

Cp =
n ( M )

kmzit -m(1-1),
E.2 Decreasing the Temperature

[Usually, small changes in the values of the
control parameter are preferred. Many techniques
were successfully used for this purpose . Some
important methods are [3] [11] [12]:
Geometric annealing ( called as well Boltzman
annealing):

¢, =ac,0<a<l.

(38)
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e Logarithmic annealing
C

0

C, = 7
“n(k)
e Fast annealing
¢, =c, e 0<a<l

e Distance annealing
C

0

Cral =
! ] + _9‘_12(:!4‘—52
30

¢

!

Where

& 1s the distance parameter ( small & -

values lead to small decrements and vice versa [3]).

o, is the spreading of the cost function.

E.3  Final Value of the Control Parameter

The termination condition is related to the final

value of the control parameter.

Here follows the description of two well-known

stop criterion:

1. Let « be the average of the cost on N landings
of temperature and a, be the average on N next
landings. Then the algorithm is terminated if [8]:

a, —a,
—L<gy
a,

(11)

2. The algorithm is terminated if for some k the

following expression holds [3]:

(39)
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E.4

111

Where

o \ 2
Ve o . (13)
oc Ci

&y Is small positive real number. It is referred to as
the stop parameter.

Number of Transitions of Each Value of the

Control Parameter [3] [9]

Quasi-equilibrium is to restored at each value of the

control parameter. To allow this, two different

approaches are available:

I. To restore quasi-equilibrium a  minimum
number of transitions 7, should be accepted at
eac1 temperature, with an upper bound for the
total number of transitions to avoid extremely
long loops for small values of the temperature.

2. The number of transitions L is constant and is
chosen equal to ®the size of neighborhoods
(number of solutions that can be generated from
a solution).

L=L=0 k=12,... (14)

Practical Results

Two examples that apply SA to NP-Complete
problems are given in this section: the Traveling
Salesman Problem ( TSP) and a real function
optimization. The effect of different parameters is
illustrated by curves issued from an application
designed for this purpose.

(40)
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1. Traveling Salesman Problem
The TSP is one of the most famous
combinatorial optimization problems[15]. An
instance of this problem consists of » cities and a
matrix D =(d, je< of distances between cities.

I<j<n
The salesman’s objective is to make a shortest
tour visiting all the cities once and only once
before returning to his starting point.

1.1 Problem Complexity

/s previously mentioned, this problem is NP-
complete; so that any algorithm that attempts
to solve it will be of exponential complexity.
The most obvious is an exhaustive search
through all possible permutations between
cities. Obviously, such an algorithm 1s O(n!)
time complexity. Better algorithms may be
found; but still all exponential For example,
by a dynamic programming approach an
algorithm whose time complexity is O(n’ 2"
had been designed [16]; but on an other hand
its space complexity goes to O(n2")

1.2 TSP Using SA
In this paragraph, the elements provided with
this specific implementation are given.

a. Solution Representation
Several representations can be adopted
without reflecting the remaining elements.
An example is to represent cities in the
order as a string.
In this application, solutions are
represented as any array whose I one

(41)
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The Cost Function
Assume Ar is a solution a:m> Cos‘ of this
solution can be calculated by referring to
distance matrix and using the following
expression:
cost(Ar)= Z il

i=1

Generation of New Solutions
A new solution can be obtained by simply
inverting a section of the tour including
certain number of cities. In this
application, a 2-change strategy [3] is
adopted as shown in figure 2.

Figure 2 2-change strategv in TSP

(42)
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d. Cooling Schedule

There is no general way to determine the
best values of the parameters that
contribute  in  different = equations.
Nevertheless, the well-known method for
this is tuning ( make a large number of
trials ).

In calculation of the final value of the
control parameter, instead of the equation
13 the following expression gave good
results ( usage of mathematical definition
of the derivative ) :

o(f), _ o =P,

oc e, —Cp
The number of transitions at each value of
the control parameter is taken equal to the
number of neighborhoods. Adopting a 2-
change strategy, it will be the number of
possibilities to choose two different non-
adjacent cities among ». In other word:
®=n(n-3) -y
Figure 3 shows results of a 400-city-
example ( distances are set randomly).
To compare with an exhaustive search,
figure 4 gives results of an instance with
ten cities. The path is not necessarily the
same but the optimal length is.

....(16)
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Optimal Order: 05755585 659>123922420
Optimal Length: 134.000000 L
| Within 372 éiations 5%

Tolal me: 1.520000 {55
R Wﬁb

- it ‘_"
Sl 7 Y P B :

R b )

'Final result

Optimal order: 0->4->2->3->1->9->6->8-> §.37.>0
Optimal path length: 194.000000
Optimal pau- found in: 173.510000 (s}

Order: 0-3]->2->3->4->5->6->7->8->9->0 (Length= 581.000000)
Order: 0->1-52->3.>4->5->6->7->9->8->0 (Length= 648.000000)
Order: 0->1-52->3.54->5-56->8->7->9->0 (Length= 490.000000)

Figure‘-i TSP Using SA and Exhaustive Search

Effect of the distance parameter's value on the cooling can be seen in figure 5
(n=50.) Small &values lead to small decrements, but the inverse leads to a meta-
stable state. In figure 6 effect of the geometric coefficient is shown, where a meta-
stable state is obtained for lower values, and the initial acceptance ratio in figure 7.

L0 oy

o

Fitness

Time (s) - Parameter §

weeme gy

Figure 5 Effect of disrance parameter

(45)




Yoie ((alll) ss : C seald s

Different cooling schedules do not have the same rate of
convergence. It can be seen in figure 8 that exponential, fast, and
geometric cooling are faster than distance and logarithmic
cooling; but this is not always useful because it may lead to a

meta-stable state.

Time (s) Parameter a

-

Figure 6 Effect of the geometric parameter

Fitness

Parameter xo

Time (s)
Figure 7 Effect of the initial acceptance ratio

(46)
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© Distance
Loeganthmic

Exponential
Fast

Time (s) Cooling Schedule

Figure 8 Effect of different schedules

2. Real Function Optimization

Another Np-complete problem is to find the
optimal value of a real function in a specific
domain. A function that has lots of local minima
is to optimize so that efficiency of SA can be
noted; it can, really, escape from local minima.
The function is given in the equation 17. The
graph of this function is shown in figure 9. The
optimum value is sought for in the real interval
[7,13].

F(x)=(x/2-5)° +sin(5x+60)+2 (17)

(47)



Yero (d\.ﬁm‘)dw‘ ' M‘u%d

[

‘.,/'\
A

Figure 9. Function to be optimized

2.1 Problem Complexity
Assume that a real number is coded on n digits.
kach digit takes one of ten values ( 0..9). Then the
optimal value is chosen among 10” number. By
consequence, the time complexity of an exhaustive

algorithm is 0(10").

2.2 Function Optimization Using SA
a. Solution Representation
An obvious representation is to consider a real as
a string of digits issued from the decimal
representation of that real. In this example, » the
number of digits is taken equal to 7; two of

(48)
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which are before the decimal point and five
precision digits.

b. The Cost Function
The cost of a solution x is, simply, the value of
the function for this solution. In order word:
Cost (x y=f(x ) (17)
In this implementation, x is taken among the
interval [7,13].

c. Generation of New Solutions
A new solution is obtained by making small
random change in the given solution. Changes in
the decimal part are preferred. This process
consists of randomly adding +1 to a randomly
selected position in the precision part.

-

| {xk =12.65356

= x,_, =12.65256
Mask = -0.001

Figurel0 Making small random changes to
generate new solution

d. Cooling Schedule

The same as the previous example, 16 was used
rather then equation 13. The number of
transitions equation evoked at each value of the
control parameter is © =2*5=10. Five precision
digits and two possibilities to adjust a digit: add
or subtract.

The effect of the distance parameter can be seen
in figure 12.

(49) |



IV CONCLUSION

In this paper, the SA algorithm was presented and
its principles were discussed. = However, this
algorithm presents a very interesting feature: it can
escape from minima, while it still exhibits the
favorable features of local search algorithms:
simplicity and general applicability. In addition, it
does not mind the degree of non-linearity,
d:scontinuity, or stochasticity of the cost function.
Furthermore, speed and convergence of the
algorithm are guaranteed by well choosing its
parameters, but in general it is statistically
guaranteed to find an optimal solution; i.e. the
algorithm converges .

Although SA is an approximation algorithm, a very
promising method, which can be used as well with
other approximation algorithms, is to consider its
result as an initial solution for an optimization
algorithm.

(50)
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Values

K7.000000)= 10006111
£7.000010) 10.006040
R7.000020)= 10.005969

"i’llWWWP 11980199
R13.000000)= 11 980240

Final result

Optinwl Value: 1022846

Obxained for x= 10.149660

Optimal solution found in: 28 390000 (s)

orae1 amRada0Ty
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253UTTY

1.834
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teyatidns (*10°0)
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E g

£ ) ]
ﬁtzrat.io%is (x10°1}

4
292
256

o
-3 "
<

Distance schedule with
=0.1, %,=0.95, £=10°

Figure 11 Function optimization using SA
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Figure 12 Effect of the distance parameter
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