
Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 27

Microservices vs. Monolithic Architectures

Nada SalahEddin ElGheriani
1

nada.slhxx@gmail.com

Abstract: Software development seems to be on the rise, owing to growing

necessity for businesses to go online. There is a push to develop upgraded

applications that will help businesses become more efficient and grow. Today's

software architectures include monolithic and microservices, which are both

popular and powerful. For microservice architecture brings practical benefits such

like scalability and flexibility, as well as being a cost-effective means of

developing large applications. On the flipside, the monolithic approach is losing

favor since it endangers current software delivery methodologies. In this paper,

we will discuss the differences between Microservices and Monolithic

Architectures, highlighting their strengths and weaknesses in each, and minding a

comparative depending on selecting a simple travel application structure, which

wins to be chosen as the best choice in software business world.

Keywords: Microservices Architecture, Monolithic Architecture, Software

Architecture, Application

1
 Researcher: College of Computer Technologies-Tripoli [CCTT], Tripoli, Libya

mailto:nada.slhxx@gmail.com

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

28

1. Introduction

When it comes to the question of how to structure code, all software need an

architecture for better understanding, communication, consensus, and negotiation

among the various stakeholders. The security, dependencies, guidance, and

implementation of defined guidelines are all determined by the software

architecture, which is the backbone of the software project. Many companies, as

Netflix, Amazon, and eBay, have shifted their applications and systems to the

cloud because the cloud computing paradigm allows them to scale their computer

resources according to their needs. Microservices Architecture is also regarded as

a method for developing software. A software application created using a self-

contained set of components that operate each application process as a service is

described here. A component in a loosely connected architecture is independent of

the others, can be written in different programming languages, use multiple data

storages, and only performs one function. At the other hand, Monolithic

architecture is an integrated approach to software development. All software

components are linked and interdependent in this environment. To run code or

compile effectively in such a tightly connected architecture, each component and

its related components must be functional.

1.1. Monolithic Architecture

One of the oldest software architectures is monolithic architecture. The goal of

this design is to construct an application with all of the required components. All

components are interdependent and, in many cases, cannot run or even compile

independently. Monolith programs have a lot of distinct libraries inside of them.

Monoliths, on the other side, as companies grow, the monoliths grow with them,

where monolith holds all classes, functions, and namespaces for the entire

application, the benefits of employing a monolithic architecture include that all

logic for handling a request runs in a single process. Certain jobs, such as testing,

become trivial for developers as a result of this. Monolith applications can be

divided into three categories. Monolithic applications with only one process are

the simplest. Many components can be combined into a single process in such

applications. This is the most popular sort of monolith system. There are also

monolithic systems that are widely distributed. Distributed monolith systems may

include numerous distributed components that are incompatible with one another

and must be installed together. In most cases, monolithic applications installed as

a single service, with the exception of distributed applications. Monolith

applications are frequently a single process, therefore monitoring them is

straightforward. End-to-end testing of monolith applications is definitely simple.

Monolithic application developers do not have to consider aspects of securing

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 29

communication between several services, which is an advantage. Certainly,

cheaper hosting costs for monolithic programs can be significant. Monolithic

applications often perform better than microservices applications. The lack of

requirement for communication with another process or service is the major

reason for this. Monolithic applications have a number of problems, one of which

being their vulnerability. It is common for one issue to have a huge impact on the

overall application, rather than simply a small fraction of it. Monolithic

applications are also technologically driven. The same technological stack must

be used to construct a complete application. It can lead to trouble when updating a

software's code to a newer framework version. Another challenge with monolithic

applications is that they can be difficult to interface with other software.

The development team is bound to commit to a single technology in monolithic

architecture, which has its own set of limitations. For example, if the application's

framework becomes obsolete over time, shifting to a newer, better framework can

be difficult. It's possible that the development team will have to rewrite the entire

application in a new language and on a different framework, which is both risky

and time consuming. Monolithic features a massive codebases that is made up of

interconnected components. Because modifying a single component requires the

entire application to be redeployed, such an application structure makes frequent

deployments difficult. This not only causes problems with background processes,

but it also affects the operation of associated services. Due to the sheer risk of

redeployments, frequent application changes are forbidden, Table 1 presents

strengths and weakness of Monolithic architecture according to its base structure.

1.2. Microservices architecture

Business logic has split down into minimal, single-purpose self-contained services

in microservice architecture. Each architectural service is in charge of achieving a

certain commercial aim. In essence, the microservice architecture resembles a

Lego construction that has been broken down into several components.

Application Programming Interface (API) guarantees that the system's

components communicate with one another. The phrase "microservice" has

recently received a lot of traction. Starting with Netflix, where has been adopted

by a number of companies, including Amazon, Spotify, and Sound Cloud. The

microservice architectural style is a method of developing distributed systems that

developed to address the shortcomings of monolithic architecture. It is an

extension of classic service-oriented architecture (SOA), highlighting the division

of a system into small, compact, and loosely connected services, each executing

on its own process space and developed with the goal of performing a highly

integrated business function. The autonomy of services is one of the primary

characteristics of microservices. While microservices are independent of one

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

30

another and should not share the same data source, they can also be deployed

independently. Each service is in charge of a little amount of logic that is centered

on the same business domain. The question is whether the microservice should be

modest or large. It can be defined as an application that can be rewritten in two

weeks. Instead of having one large-scale, service that handles all business logic,

microservice architecture is a distributed system where all its modules are

microservices, each dedicated to a single business capability. This foster

separation of concerns and allows each service to be independently replaceable,

upgradeable and redeploy able at any time.

Table 1: Strength and weakness of Monolithic architecture

Strengths of Monolithic Architecture Weakness of Monolithic Architecture

Less cross-cutting concerns

Logging, handling, caching, and

performance monitoring are all aspects that

affect the entire application. This section of

functionality only affects one application in

a monolithic application.

Understanding

When a monolithic application grows in

size, it becomes complicated to

understand. Furthermore, managing a

complicated coding structure within a

single application is difficult.

Easier debugging and testing

Debugging and testing monolithic

applications is significantly easier.

Whereas the monolithic software is one

indivisible item.

Making changes

It is harder to implement changes in such

a large and complex application with

highly tight coupling. Any code change

affects the whole system so it has to be

thoroughly coordinated. This makes the

overall development process much

longer.

Simple to deploy

There is no need to deal with several

deployments when it comes to monolithic

applications, just one file or directory.

Scalability

Only the whole application.

Simple to develop

Any technical team with proper abilities

and knowledge can design a monolithic

application as long as the monolithic

approach is a typical way of building

applications.

New technology barriers

Applying a new technology to a

monolithic application is exceedingly

difficult because the entire application

must be rebuilt.

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 31

Characterized control and data management are also provided by the

independence. The database per service pattern refers to each service having its

own, independent storage system that can be built with the most appropriate

technology stack for the work at hand. Microservice architecture is flexible and

creates opportunities for companies to respond faster to inevitable change because

of its evolutionary design. Microservice architecture can increase agility,

developer productivity, resilience, scalability, reliability, maintainability,

separation of concerns, and ease of deployment. However, all of this comes with

its own set of challenges. Services communicate over the network as

microservices are built independently. This requires service discovery, enhanced

security management, improved communication, and load balancing.

Microservices architecture allows developers to build applications utilizing a

variety of technologies (languages, frameworks, and operating systems). With a

single technological stack, this eliminates dependency and long-term

commitment. A new, better technology stack can be implemented whenever a new

service is established or an old service is updated.

This also reduces the development team's dependence on a single resource for

creating or updating services. Each component of an application is operated and

scaled separately in microservices. This means that if one of the application's

services is changed, the other services will remain unaffected. Furthermore,

microservices do not exchange code or implementation with other microservices.

Microservices architecture makes continuous development and deployment of

large, complicated applications simple. Using these little standalone, applications

that provide specific functionality have both strengths and Weakness points, Table

2 - presents the strengths and weakness of Microservices architecture.

1.3. Research Questions

How monolithic Works?

The monolithic architecture is made up of various components that work with

each other to define it. These include the following:

Business layer; this layer specifies what the application must do to meet with the

business logic.

Database layer; It serves as a repository for all required data objects.

Presentation layer; this layer improves the communication between the user

interface and the browser.

More specifically: the application's requests and responses.

Persistence layer; it takes care of object-relational mapping and other tasks.

In a monolithic architecture, all the layers act in isolation from each other. It

implies that any change in any layer requires an update on the remaining layers to

be executable. How microservices work?

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

32

Table 2: Strength and weakness of Microservices architecture
Strengths of Microservices

Architecture

Weakness of Microservices

Architecture

Independent components

As starting with, all of the services can

be installed and upgraded

independently, allowing for greater

flexibility. Moreover, a problem in a

single microservice affects only that

service and does not affect the entire

application. In addition, adding new

features to a microservice application is

significantly easier than adding them to

a monolithic program.

Extra complexity

Whereas microservices architecture is a

cloud - based system, the connections

between all of the modules and databases

must be established and set up.

Furthermore, if an application has

independent services, each one must be

deployed separately.

Easier understanding

Microservice applications are better to

understand and manage since it is

broken down into smaller and simpler

components.

System distribution

Since a microservices architecture is a

complicated system with many modules

and databases, all of the connections

must be carefully managed.

Better scalability

The microservices architecture also has

the advantage of allowing each

component to scale independently. As a

result, the entire process is less

expensive and time-consuming than

with monoliths, where the entire

application must be scaled even if it is

not required.

Cross-cutting concerns

To deal with a number of cross-cutting

concerns when developing a

microservices application. Externalized

configuration, logging, metrics, health

checks, and other features are among

them.

The higher level of agility

Any flaw in a microservices application

only affects one service, not the entire

solution. As a result, all of the

modifications and experimentation are

carried out with fewer risks and errors.

Testing

Testing a microservices-based solution is

significantly more difficult due to the

large number of independently

deployable components.

The microservices architecture divides functions into smaller parts known as

services. These services are set up to carry out specific activities or operations.

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 33

Moreover, the database structure is such that depending on the type of data needed

to handle specified tasks, each microservice has its own database or may share

one. The microservices communicate with one another using an API. An

application-programming interface (API) is a collection of instructions that allows

users to call the application and receive the necessary data. The API retrieves data

from numerous microservices in order for the end client's mobile or desktop

applications to conduct the appropriate requests.

Why microservices?

Each microservice can be deployed independently There is no need to re-deploy

the entire application with each update, and for complicated applications,

continuous deployment is conceivable. The team dedicated to that service in terms

of development can build Microservice independently. Decomposing an

application makes it considerably easier to design applications that are more

comprehensible and maintainable. Adapting to new technologies is simple since

developers are free to choose the technologies that make sense for their service

rather than being restricted to the choices made at the start of the project.

Which software architecture to choose?

To answer this question, business requirements such as project budget, estimates,

and revenue must first be stated. Small enterprises and startups will thrive from

the monolithic approach since that allows for easy development and deployment.

But at the other hand, microservices will aid in the implementation of changes and

upgrades to the application structure.

By considering the following scenarios, for making the choice to choose a

monolithic architecture firstly, project must be informed in many different ways,

such as:

 Plan to create a basic application that will not require future upgrades. The

project's complexity will be a disadvantage in this situation due to the

microservices architecture's complexity.

 The product must be deployed as soon as possible.

 Will not have a staff of specialists who can partition the system into

different functionalities and assign roles.

Reasons for making the choice to choose a microservices architecture secondly:

 Set to deploy a large-scale, sophisticated application. The implementation

of new technologically advanced stacks will be the ideal answer if new

functionalities and upgrades to the application that required in the future.

Microservices strategy will be particularly useful for gaining a competitive

advantage in this regard.

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

34

 If there were specialists who are strongly tied to microservices and have

extensive knowledge in this industry, this would be ideal for microservices

architecture strategies.

Not all architecture created equal. Likewise, although not all applications created

similar, microservices are better suited to sophisticated and dynamic applications,

on the other hand, will be a monumental task without sufficient competence in

these technologies. In addition, many people think differently in architecture.

Some people believe that the application should build as a monolith initially for

being easier at first then switched to microservices when growing. However, the

main point in software architecture that there would be no need to start with

monoliths if the goal was to construct a microservices application. Choosing the

best architecture always depends on software’s structure and the purpose that

created for service.

The differences in software development methodologies among microservices and

monolithic architecture are shown in Table 3.

1.4. Software Industry Issues and Priorities

All software companies aspire to be more agile and faster, to deliver products

more quickly, to have shorter release cycles, and to help their customers achieve

Digital Transformation. Hundreds of legacy apps are sitting in on premise data

centers for most mid-to-large businesses, and they want to shift them to the cloud.

They commonly transfer their applications to the cloud in their current state, but

this is ineffective. Cloud applications must build in such a special manner. This

paper will show how shifting an application structure from monolithic to

microservices can change the whole business strategy, Where

Microservices provide lots of benefits over monolithic systems, despite the fact

that they are a relatively new idea. Numerous monolithic applications previously

been developed. They are not really cloud natives

2. Methodology

To compare the structure of two different architectures on travel application,

initially identify the first application, which built using monolithic and prove the

challenges of shifting to microservices, then understand how microservice

application can provide backend capabilities by exposing APIs, where the

gateway displayed in the frontend of the entire system that includes all of the APIs

of every microservice application in the system.

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 35

Table 3: Development methodologies among microservices and monolithic

architecture

Monolithic Architecture Microservices Architecture

Follows a basic architecture with tightly

connected service components.

The architecture is structured into a

variety of loosely coupled service

components.

Usually takes longer to develop. Quick to develop and takes little time.

All of the components are

interdependent, and if one goes down,

the entire application falls.

Any service that goes down can be

addressed independently without

affecting the application.

Requires less resource distribution

because the services are It follows a

centralized approach dependent.

Each team can work independently under

a microservice architecture.

Continuous and rapid application

delivery is tough for the application

development process must be initiated

from scratch.

The entire team contributes to numerous

advancements, allowing for speedier

development and ongoing delivery.

Less scalable Highly scalable

Difficult to communicate

amongst teams.

The teams' communication is clear and

effective.

Project-based approach. Product-based approach.

One technology can be utilized at a

time, and the application cannot be

upgraded with newer technologies.

Various technologies can be applied to

different service components.

2.1. Microservices Platform

For this type of application, microservices-based system would be suitable. A

microservice would handle each phase of the data preparation process: data

collecting, filtering, normalization, enrichment, aggregation, and reporting. The

microservices approach naturally provides a trackable lineage, making it very easy

to trace back, which microservices may need to be modified if data issues happen.

In the case of microservices architecture works through component isolation. If

one microservice fails in this loosely connected architecture, it is easy to spot and

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

36

assures that other sections of the program are unaffected. The proactive avoidance

of platform inefficiencies and failure through microservice autonomy is becoming

increasingly relevant for industries and enterprises that frequently deal with a high

volume of requests or the interchange of sensitive data across multiple

applications. Furthermore, the separation of distinct platform components makes

monitoring easier, technical staff can also tap into deeper functionality from a

service-layer perspective, and empower continuous development, integration, and

refinement of their important processes in a way that can actually transform and

move ahead due to the power of microservices architecture; see Figure 2.

2.2. Travel application architecture Scenario

Software Company has implemented a travel platform; this application has

implemented using monolithic backend system. While it was difficult to integrate

hundreds of service providers because its technology greatly differs and has some

minimal technical expertise, the replacing architecture base needed eventually.

2.3. Monolithic architecture in use

Serving so many routes with so many different transport modes, plethora of

offers, promotions, rules, dynamic timetables, moving grounds, and a seemingly

unlimited amount of journey segment permutations is no small engineering

achievement. The magic that transpired between pressing the search button on the

landing page and showing a list of the most intriguing connections was managed

by a single monolithic application at the beginning, for when the volume of the

traffic, data, codebase, and number of external integrations was significantly was

much smaller. However, as everything continued to rapidly increase in numerous

dimensions, it became increasingly difficult to build and operate. The whole stiff

working probably know what happened next, by keeping up with current software

architecture and technical advances. Everything concerning provider integration

was built as a monolithic service because the design was simple enough. Figure 1

illustrates the Monolithic architecture.

Integrating providers is just one part of the puzzle when it comes to creating a

search result. Originally, all of the code was contained within a single monolithic

application. Conflicts arise frequently among teams working on the same

codebase. Changes in one place had unintended consequences in other others. It

was difficult and time-consuming to coordinate releases amongst teams. A large

number of changes released at the same time raised the chance of failure. Difficult

to trace the particular commit that caused a failure if one occurred, and it may not

always be possible to reverse it because there may have been a lot of other

changes stacked on top of it.

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 37

2.4. Application Architecture

Travel: Airfares displayed and airline tickets purchase.

Hotel: Hotel room listings and reservation.

Purchase: Providing users with the ability to make payments.

Authentication: Identification service for signups, logins, and logouts, among

other things.

Figure 1: Monolithic Architecture

2.5. Thinking Microservices

Application growing study: By choosing to use feature toggles, one may easily

enable or disable new code execution pathways and functionality based on

database entries. This would be, nevertheless, frequently difficult and blunder, as

there was sometimes a need to branch the logic in multiple locations. Away from

the increased development complexity, the application grew increasingly difficult

to start and demanded increasing amounts of resources. As a result, increasing the

number of replicas in production proved challenging and inefficient in terms of

CPU and memory usage.

First, a single architecture that controls the layout of basic search results,

bookings, and travel modes, among other things. The model comprises a search

result structure that incorporates travel legs, segments, stations, trains, stops, and

offers, among other things.

Second, a bootstrap application that serves as a runtime framework around

the code for specific provider search integration and displays all of the required

API endpoints as specified in the Search Core contract.

Finally, when building a new integration, a code-generation tool based on Rhythm

templates are used to generate all of the glue code.

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

38

Figure 2: Microservices Architecture

2.6. Layout service in Microservices

Since microservices are lightweight, self-contained, and Cloud hosting that are

simple to comprehend, deploy, and scale. While constructing this application as

collection of small services, each executing in its own process and communicating

using lightweight mechanisms [HTTP resource, and API].

Description: Microservices supports dividing a monolithic application into

smaller bits or components. In other words, it separates each module from the

monolithic architecture as a standalone monolithic architecture. It takes a modular

approach to huge application development. The microservices’ individual services

or components are loosely coupled with one another. Additionally, they function

as a self-contained unit. By comparing the monolithic architecture to

microservices, standing on three basic steps (Development, Troubleshooting, and

Deployment) greatly enhances the company's experience when developing an

application.

2.7. Development

The monolithic design, most likely, use a single codebase or repository. This

implies that all developers contribute separately to a single codebase. They are

pulling the most recent code from a remote repository, as well as pushing and

merging their own. This creates a lot of code clashes as a development workflow.

As a result, resolving these issues may cause the workflow to slow down. As

going in-group of developers is working on the payment mechanism of

application, another team could be working on the authentication module at the

same time. However, they are both bringing in new code and pushing it to the

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 39

same repository. This is not necessary because their activities are unrelated and

could generate confusion. The payment team no longer has to be concerned about

the authentication team's most recent codebase changes. Similarly, the

authentication team can push their code without involving the payment team.

2.8. Troubleshooting

The architecture in monoliths is tightly coupled frequently leads to difficult-to-

trace faults and defects. This is due to the fact that modifications in one

component or module can frequently result in unintended changes in other

connected modules. However, as working on a flaw in the authentication module,

as it is so close to the payments module in the same codebase, technical

staff accidentally introduced an unwanted behavior in the payments module. In

this situation, the monolith suffers from the drawback of being more vulnerable to

application bugs. In addition, microservices are more flexible in this situation.

Because of payment module is lightly connected with the authentication module,

no matter how many flaws is create in the authentication module, the payment

module will stay intact. Since the authentication and payment modules are

different projects, even inadvertent changes to the authentication module will not

affect the payment module.

2.9. Deployment

In monolith, updating the authentication module on the server requires

redeploying the entire application. One of the major drawbacks of monoliths is

that a slight change in a supposedly isolated module can result in the entire

application being deployed. Furthermore, if the factor in the resulting downtime, it

could be a difficult condition for company, users, and entire product. In this

situation, the related delay is only visible in the authentication microservice. All

of the other microservices continue to function normally. Figure 3 and Figure 4

illustrate the full application deployment–monolithic and individual services

deployment–microservices respectively.

2.10. Cost and Complexity

For microservices the more components the architecture has, the more complex it

is to manage and maintain them. As a result, the whole application's cost and

complexity increases, having many services, each hosted separately means having

independent codebases. In addition, each microservice should have its own

database, the additional cost and complexity of hosting databases could be

significant. Monolithic is straightforward, not lavish. In terms of infrastructure,

just one server is required for the application and another for the database.

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

40

Figure 3: Full Application Deployment – Monolithic

Figure 4: Individual Services Deployment - Microservices

2.11. Communication between sectors

To book a flight, the user launches the application. Two application modules are

used in this scenario. The first is the travel one, which displays all available

flights, reserves a seat for user, and generates e-tickets, and so on. Second,

payment; without paying, no reservation can be made.

By mentioning how the travel module communicates with the payment module

in monolithic, first; at the time of payment, invoking the payment module from

the travel module. Furthermore, in monolithic architecture, all modules are in one

location. The code works from any location.

The travel microservice must communicate with payment microservice. Each

microservice needs to interact with the others if user wanted to book a complete

travel package like, airline tickets, hotel room. Furthermore, some use cases may

require a lot of back-and-forth across multiple microservices. For example, user

may buy a flight and a hotel for themselves, and then book a hotel for a business

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 41

visitor. Clearly, monolithic systems have the ability to be faster than their

microservice equivalents.

3. Results

Users are always looking for services that are faster, more efficient, and more

performant. Monolithic services might be faster than their microservice

equivalents. Inter-services communication is where this performance comparison

differs. Each inter-services connection with microservices will almost certainly

take the form of an API call. This API call is transformed into code calls or

function invocations in monoliths.

Scalability

Using a load balancer and many server nodes to achieve horizontal scaling in

monolithic architecture, Monolithic would be able to scale effectively without a

single point of failure. As a result, if one of the server nodes or the API server

fails, the other nodes can step in to help. However, one disadvantage of scaling

monoliths will always be the separation of business logic. Figure 5 illustrates the

horizontal scaling- Monolithic Architecture.

Figure 5: Horizontal scaling- Monolithic Architecture

At the business level, the requirement to divide modules or components becomes

more critical. Microservices are incapable of horizontal scaling. Individual

microservices can be scaled as and when needed, allowing for granular scaling.

Figure 6 illustrates the granular scaling- Microservices Architecture.

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

42

Figure 6: Granular scaling- Microservices Architecture

4. Conclusions

According on the comparisons, the software firm must select which factors are

crucial. Monoliths are a good place to start. It is also a good idea to have a small

team for monolithic. When it goes to scale the application from a medium to a

somewhat large size, horizontal scaling in the monolithic is good. As

microservices, fits with a large and diverse workforce, and a diversity of tech

stacks, wins this one. As a result, the decision is to bear the cost and complexity

of microservices.

References

[1] Lebedev, A. (2021). monolithic and microservices-based architecture.

Retrieved from:

https://morioh.com/p/54271e7358ad?f=5c224490c513a556c9042463&fb

clid=IwAR0Uly4YTIS0cKeKPCR5I_e8ZcrIRJEwA62AUoAAciOT4vh

D8VcHZcetkfU.

[2] Dissanayake, B. (Nov 17, 2019). Level up coding. Monolithic vs.

Microservices Architecture. Retrieved from:

https://levelup.gitconnected.com/monolithic-vs-microservices-

architecture-b333c8754187.

[3] Kharenko, A. (2015). Monolithic vs. Microservices, Monolithic

Architecture. Microservices Practitioner Articles. Retrieved from:

https://articles.microservices.com/monolithic-vs-microservices-

architecture-5c4848858f59.

[4] Jain, P. (October 28, 2020). Monolithic vs Microservices – Difference,

Advantages & Disadvantages. Retrieved from:

https://k21academy.com/docker-kubernetes/monolithic-vs-

microservices/?utm_source=facebook&utm_medium=referral&utm_cam

paign=kubernetes31_jan21_cloud_for_beginners&fbclid=IwAR3KFlLG

XZt_dVIh6DitflogpS2JubJo0DZswr4ods0GYakwHBdb6vrshNU#8.

Al-Mansour Journal/ Special Issue HICNAS2022 خاصعدد / مجلة المنصور

 43

[5] Spratshi. (June 11, 2020). Monolithic Vs Microservices Architecture.

Retrieved from: https://readsngeeks.blogspot.com/2020/06/monolithic-vs

microservices.html?fbclid=IwAR0Hbf0Nkqvp0F1qxQAUgHEVBS9acU

hYjsTlif5hsvE2aSpCoBV0-7n_mEQ.

[6] Eisele, M. (June 16, 2019). Monolithic Vs Microservices. Retrieved from:

https://programmerfriend.com/monolith-vs-

microservices/?fbclid=IwAR0YO3B8H2Q43YG2INYHIO7AZ5I6yAb2

UwavO3O_s0K16_9Rf1cDbI_Cirk.

[7] Kaczmarek, A. (Jan 8, 2021). Monolithic vs Microservices - which

architecture to choose?. Retrieved from:

https://softwaremill.com/monolithic-vs-microservices.

architecture/?fbclid=IwAR0083PnR_6Klf0236Lnz8LBMwV22GJewmp

ZoucgnFWW63HD-0Rsv-amVg0.

[8] Matloka, M. (Aug 03, 2020). How to design microservices architecture?.

Retrieved from: https://softwaremill.com/designing-microservices-

architecture/.

[9] Maddikera, B. (Mar 20, 2021). How to Build Micro Services - Real

World - Travel App. Retrieved from:

https://www.linkedin.com/pulse/micro-services-travel-app-bhargav-

maddikera.

[10] Vistola, L. (July 23, 2021). The Move Away from Monolithic

Application Development. Retrieved from: https://devops.com/the-move-

away-from-monolithic-application-development/.

[11] Sontz, M. (2022). From Monoliths to Microservices – Benefits and

Challenges. RCG Global Services. Retrieved from:

https://rcgglobalservices.com/monoliths-microservices-benefits-

challenges/?fbclid=IwAR0YO3B8H2Q43YG2INYHIO7AZ5I6yAb2Uw

avO3O_s0K16_9Rf1cDbI_Cirk#:~:text=Refactoring%20a%20monolithi

c%20application%20to,ahead%20and%20plan%20for%20failure.

[12] Garcia, L.M., Aciar, S., Mendoza, R., & Puello, J.J. (2018). Smart

Tourism Platform Based on Microservices Architecture and

Recommender Services. Mobile Web and Intelligent Information

Systems, pp.167-180.

[13] Blinowski, G. Ojdowska, A. & Przybylek, A. (Nov 30, 2021).

Monolithic vs. Microservices Architecture: A Performance and

scalability Evaluation. IEEE Access.

[14] Na, N., Wang, W., Xu, Y,. & Luo. W. (2019). A Microservice–Based

Big Trajectory Data Processing Platform for Multimodal Trip Planning.

International Conference on Big Data, Electronics and Communication

Engineering.

Nada SalahEddin ElGheriani Author(s) Name with Scientific Degree

44

 تجانسةى المالخدمات المصغرة مقابل البن

ندى صلاح الدين

1

nada.slhxx@gmail.com

يبدددأ ت ويددويب الببمجآدداف خددد ادد، اسبديدداد ة الددبا ال انددة الملأعايددد ت ودددخ ا عمددا :المستتتخ

هناك داعة للأيويب اللأيبآقاف اللأ، ومت وبقآلأها مد أدهنها ت ولداعد الادبعاف علد . اللأجارية عبب الإنلأبنت

والأم هآاع الببمجآاف ال الآة عل خدماف ملأجانلة أصغآب ة أاللأ، و ظد . عفاء أنموًا ت وصبح عثب

االنلبة لبنآة الخدماف المصغب ة اإنها وواب معايا عملآة مث قاالآة اللأوسع أالمبأنة ة اضدًً . ااعبآة أقوية

ندا اخخدب ة يفقدد الدنهم الملأد ل علد الجا. ع عونها أسآلة اعالة م حآث اللأكلفة للأيويب اللأيبآقاف الكبآب

اد، هددا الورقدة ة سدنناقخ اسخلأًاداف ادآ . وفضآله نه يعبض منهجآداف ووصدآ البدبامم ال الآدة للخيدب

الخدماف المصغب أالبن الملأجانلة ة مع إاباب نقاط القو أالضع اد، عد منهمدا ة أاللأفكآدب اد، المقارندة

اللدفب ة أالددي يفدوب ااخلأآدارا عهاضد خآدار اد، عدالي الببمجآداف اعلأمادًا عل اخلأآدار هآكد الدآت للأيبآد

 .اللأجارية

 نلةة هندسة الببمجآافة اللأيبآ الهندسة المعمارية الملأجا المصغب ةهندسة الخدماف : الك مات المفتاحية

1
لآبآا -طباالس -علآة وقنآاف ال اسوب : ااحثة

