TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Al- Mansour University College	
2. University Department/Centre	Communication Department	
3. Course title/code	Statistics and Probability	
4. Programme(s) to which it contributes		
5. Modes of Attendance offered	Weekly – Lectures	
6. Semester/Year	2020 – 2021 (First Semester)	
7. Number of hours tuition (total)	30 Hours	
8. Date of production/revision of this specification	26-4-2021	
9. Aims of the Course		
Introducing the different statistical methods used in solving multiple problems in		

statistics, while giving the necessary foundations in probability.

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1. Learn about statistics and probability.

A2- Learn a variety of numerical methods for solving different problems in statistical mathematics.

A3- Linking statistical knowledge to the issue of probability.

B. Subject-specific skills

B1. Training the student to deal with different sports situations.

B2 - Training the student to model practical problems related to probability. B

Teaching and Learning Methods

1- Theoretical lectures with solving various practical examples.

2- Homework.

Assessment methods

- 1- Assessment of class exercises
- 2- Evaluation of extra-curricular exercises
- 3- Semester exams

C. Thinking Skills

C1. Training students on the behavior of the scientific approach in investigation and research.

C2 - Training students on scientific reasoning about dealing with different issues and situations.

Teaching and Learning Methods

Theoretical lectures with related seminars.

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Enable the student to know the subject of statistics and probability and link the two branches with each other.

D2 - Enable the student to obey the foundations he has received in order to be able to apply them in different aspects of life.

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1-2	4	Fundamentals of statistics	Statistics Fundamentals	Theoretical Lectures	Exam and assessment
3-4	4	Classification of data	Data Classification	Theoretical Lectures	Exam and assessment
5-6	4	Applications on data classifications	Examples	Theoretical Lectures	Exam and assessment
7-8	4	Measure of Location	Central Tendency	Theoretical Lectures	Exam and assessment
9-10	4	Applications on central tendency	Examples	Theoretical Lectures	Exam and assessment
11-12	4	Methods to measure variation	Measures of Variation	Theoretical Lectures	Exam and assessment
13-14	4	Introduction to probability	Probability Fundamentals	Theoretical Lectures	Exam and assessment
15	2	Types of probabilities	Conditional and Unconditional Probabilities	Theoretical Lectures	Exam and assessment

12. Infrastructure	
Required reading:	Statistics_made_simple
 CORE TEXTS COURSE MATERIALS OTHER 	_H.THayslett_JrNumerical Douglas C. Montgomery, George C. Runger, Norma F. Hubele - Engineering Statistics - Wiley (2010)